基于改进灰狼算法和TCN-QRF的超短期光伏出力概率预测Probabilistic forecasting of ultra-short-term PV output using the improved GWO and TCN-QRF
朱涛,杨欢红,肖峰,李光,李广一,朱伟星,叶婧元
ZHU Tao,YANG Huanhong,XIAO Feng,LI Guang,LI Guangyi,ZHU Weixing,YE Jingyuan
摘要(Abstract):
光伏发电在电力系统中占比不断提高,实现准确的光伏出力概率预测能够有效辅助电网调控运行。为了提高概率预测精度,提出了一种基于改进灰狼算法和TCN-QRF(时间卷积神经网络-分位数随机森林)的光伏出力概率预测方法。首先将完成预处理的光伏出力时间序列数据集转换为监督学习数据集;然后使用TCN提取光伏出力时序特征作为QRF的输入,构建TCN-QRF模型;最后,基于非线性收敛因子和高斯突变策略改进灰狼算法,使用改进灰狼算法完成TCN-QRF超参数的高效选择,实现了更精准的光伏出力概率预测。
As the share of photovoltaic(PV) power generation grows increasingly within electric power systems, the accurate probabilistic forecasting of PV output can be help for grid regulation and operation. To enhance forecasting precision, a probabilistic forecasting method for ultra-short-term photovoltaic output using the improved grey wolf optimization(GWO), temporal convolutional neural networks and quantile random forests(TCN-QRF) is proposed.Firstly, the preprocessed time series dataset for PV output is converted into a supervised learning dataset. Then, the TCN is used to extract the temporal features of PV output as the input to the QRF, constructing the TCN-QRF model. Finally, the GWO is improved using the nonlinear convergence factor and Gaussian mutation strategy. The improved GWO efficiently selects hyperparameters for TCN-QRF, enabling a more precise probabilistic forecasting of PV output.
关键词(KeyWords):
改进灰狼算法;概率预测;光伏出力;TCN-QRF
improved GWO;probabilistic forecasting;PV output;TCN-QRF
基金项目(Foundation): 国家自然科学基金(52177100);; 中国华电集团公司科技项目(CHDKJ23-02-233)
作者(Author):
朱涛,杨欢红,肖峰,李光,李广一,朱伟星,叶婧元
ZHU Tao,YANG Huanhong,XIAO Feng,LI Guang,LI Guangyi,ZHU Weixing,YE Jingyuan
DOI: 10.19585/j.zjdl.202408010
参考文献(References):
- [1]王鑫淼,马志勇,周旺潇,等.光伏发电系统碳中和及其影响因素[J].资源科学,2022,44(8):1735-1744.WANG Xinmiao,MA Zhiyong,ZHOU Wangxiao,et al.Carbon neutralization in photovoltaic power generation system and influencing factors[J]. Resources Science,2022,44(8):1735-1744.
- [2]韩梦瑶,熊焦,刘卫东.中国光伏发电的时空分布、竞争格局及减排效益[J].自然资源学报,2022,37(5):1338-1351.HAN Mengyao,XIONG Jiao,LIU Weidong. Spatiotemporal distribution, competitive development and emission reduction of China’s photovoltaic power generation[J]. Journal of Natural Resources,2022,37(5):1338-1351.
- [3]杨哲涵,熊小伏.基于光伏有功备用的电网预防-紧急协调控制方法[J].电工电能新技术,2021,40(7):1-10.YANG Zhehan,XIONG Xiaofu. Power grid preventionemergency coordinated control method based on photovoltaic load shedding[J].Advanced Technology of Electrical Engineering and Energy,2021,40(7):1-10.
- [4]王洪坤,葛磊蛟,李宏伟,等.分布式光伏发电的特性分析与预测方法综述[J].电力建设,2017,38(7):1-9.WANG Hongkun,GE Leijiao,LI Hongwei,et al. A review on characteristic analysis and prediction method of distributed PV[J].Electric Power Construction,2017,38(7):1-9.
- [5]朱继忠,董瀚江,李盛林,等.数据驱动的综合能源系统负荷预测综述[J].中国电机工程学报,2021,41(23):7905-7924.ZHU Jizhong,DONG Hanjiang,LI Shenglin,et al.Review of data-driven load forecasting for integrated energy system[J].Proceedings of the CSEE,2021,41(23):7905-7924.
- [6]李斌,张一凡,颜世烨,等.基于改进极限学习机ELM的光伏发电预测方法研究[J].热能动力工程,2022,37(10):207-214.LI Bin,ZHANG Yifan,YAN Shiye,et al. Research on Photovoltaic Power Generation Prediction Method based on Improved Extreme Learning Machine(ELM)[J].Journal of Engineering for Thermal Energy and Power,2022,37(10):207-214.
- [7]袁建华,李洪强,谢斌斌,等.基于特征因素选取的IVMD-GLSSVM光伏出力短期预测[J/OL].电子测量技术:1-7.http://kns.cnki.net/kcms/detail/11.2175.TN.20230522.1609.002.html.Yuan Jianhua,Li Hongqiang,Xie Binbin,et al.Short-term prediction of PV output of IVMD-GLSSVM based on characteristic factors[J/OL]. Electronic Measurement Technoology:1-7. http://kns. cnki. net/kcms/detail/11.2175.TN.20230522.1609.002.html.
- [8]谢少华,何山,闫学勤,等.基于SSA-BP神经网络的光伏短期功率预测[J].浙江工业大学学报,2022,50(6):628-633.XIE Shaohua,HE Shan,YAN Xueqin,et al. Short term photovoltaic power prediction based on SSA-BP neural network[J].Journal of Zhejiang University of Technology,2022,50(6):628-633.
- [9]刘国海,孙文卿,吴振飞,等.基于Attention-GRU的短期光伏发电功率预测[J].太阳能学报,2022,43(2):226-232.LIU Guohai,SUN Wenqing,WU Zhenfei,et al. Shortterm photovoltaic power forecasting based on attentiongru model[J].Acta Energiae Solaris Sinica,2022,43(2):226-232.
- [10]黎静华,骆怡辰,杨舒惠,等.可再生能源电力不确定性预测方法综述[J].高电压技术,2021,47(4):1144-1157.LI Jinghua,LUO Yichen,YANG Shuhui,et al.Review of uncertainty forecasting methods for renewable energy power[J].High Voltage Engineering,2021,47(4):1144-1157.
- [11]刘洁,林舜江,梁炜焜,等.基于高阶马尔可夫链和高斯混合模型的光伏出力短期概率预测[J].电网技术,2023,47(1):266-275.LIU Jie,LIN Shunjiang,LIANG Weikun,et al. Shortterm probabilistic forecast for power output of photovoltaic station based on high order Markov chain and Gaussian mixture model[J]. Power System Technology,2023,47(1):266-275.
- [12]许彪,徐青山,黄煜,等.基于藤copula分位数回归的光伏功率日前概率预测[J].电网技术,2021,45(11):4426-4435.XU Biao,XU Qingshan,HUANG Yu,et al. Day-ahead probabilistic forecasting of photovoltaic power based on vine copula quantile regression[J]. Power System Technology,2021,45(11):4426-4435.
- [13]王开艳,杜浩东,贾嵘,等.基于相似日聚类和QR-CNNBiLSTM模型的光伏功率短期区间概率预测[J].高电压技术,2022,48(11):4372-4388.WANG Kaiyan,DU Haodong,JIA Rong,et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J].High Voltage Engineering,2022,48(11):4372-4388.
- [14]何锋,章义军,章建华,等.基于相似日和分位数回归森林的光伏发电功率概率密度预测[J].热力发电,2019,48(7):64-69.HE Feng,ZHANG Yijun,ZHANG Jianhua,et al. Forecasting of photovoltaic power generation probability density based on similar day and quantile regression forests[J].Thermal Power Generation,2019,48(7):64-69.
- [15] AHMED A,KHALID M.A review on the selected applications of forecasting models in renewable power systems[J]. Renewable and Sustainable Energy Reviews,2019,100:9-21.
- [16]万灿,崔文康,宋永华.新能源电力系统概率预测:基本概念与数学原理[J].中国电机工程学报,2021,41(19):6493-6509.WAN Can,CUI Wenkang,SONG Yonghua.Probabilistic forecasting for power systems with renewable energy sources:basic concepts and mathematical principles[J].Proceedings of the CSEE,2021,41(19):6493-6509.
- [17]孟金鑫,黄山,印月.基于特征优选策略和DLSTMsFCN优化的短期负荷预测[J].电子测量技术,2023,46(10):46-52.MENG Jinxin,HUANG Shan,YIN Yue.Short-term load forecasting model based on feature optimization strategy and DLSTMs-FCN[J].Electronic Measurement Technology,2023,46(10):46-52.
- [18] WANG Y Y,CHEN J,CHEN X Q,et al.Short-term load forecasting for industrial customers based on TCNLightGBM[J]. IEEE Transactions on Power Systems,2021,36(3):1984-1997.
- [19]吴春华,董阿龙,李智华,等.基于图相似日和PSOXGBoost的光伏功率预测[J].高电压技术,2022,48(8):3250-3259.WU Chunhua,DONG Along,LI Zhihua,et al.Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High Voltage Engineering,2022,48(8):3250-3259.
- [20]梁露,刘远龙,刘韶华,等.基于ECA-TCN的电力系统短期负荷预测研究[J].电力系统及其自动化学报,2022,34(11):52-57.LIANG Lu,LIU Yuanlong,LIU Shaohua,et al.Research on short-term load forecasting of power system based on ECA-TCN[J].Proceedings of the CSU-EPSA,2022,34(11):52-57.
- [21]杨斌,杨世海,曹晓冬,等.基于EMD-QRF的用户负荷概率密度预测[J].电力系统保护与控制,2019,47(16):1-7.YANG Bin,YANG Shihai,CAO Xiaodong,et al.Shortterm consumer load probability density forecasting based on EMD-QRF[J].Power System Protection and Control,2019,47(16):1-7.
- [22]张文煜,马可可,郭振海,等.基于灰狼算法和极限学习机的风速多步预测[J].郑州大学学报(工学版),2024,45(2):89-96.ZHANG Wenyu,MA Keke,GUO Zhenhai,et al. Multistep prediction of wind speed based on grey wolf algorithm and extreme learning machine[J]. Journal of Zhengzhou University(Engineering Science),2024,45(2):89-96.