考虑时空关联及气象耦合的区域分布式光伏功率预测Regional distributed photovoltaic power forecasting considering spatiotemporal correlation and meteorological coupling
黄晓燕,郭洒洒,陈成优,徐腾翀,韩晓,王涛
HUANG Xiaoyan,GUO Sasa,CHEN Chengyou,XU Tengchong,HAN Xiao,WANG Tao
摘要(Abstract):
当前分布式光伏功率预测多采用静态图模型捕捉分布式光伏电站之间的时空特性,大多未考虑气象因素对不同分布式光伏电站功率预测的影响存在差异。为此,提出一种考虑时空关联及气象耦合的区域分布式光伏功率预测方法。首先,基于对分布式光伏电站出力特性的分析,采用自适应图卷积神经网络和长短期记忆网络挖掘分布式光伏出力的时空特性,并通过非共享参数的神经网络层捕捉不同光伏电站与气象的耦合关系,实现多个光伏电站的功率预测。然后,为减小直接对各个光伏电站预测功率求和带来的误差放大问题,在模型中加入可学习的权重层,得到区域总光伏功率。最后,在多种天气场景下,与多种预测模型进行对比分析,验证了所提预测方法的精确性和稳定性。
Current distributed photovoltaic power forecasting methods typically use static graph models to capture the spatiotemporal characteristics among distributed photovoltaic power stations, but most of them do not account for the varying impact of meteorological factors on the power forecasting of different stations. To address this, this paper proposes a regional distributed photovoltaic power forecasting method that considers spatiotemporal correlation and meteorological coupling. First, based on an analysis of the output characteristics of distributed photovoltaic power stations, an adaptive graph convolutional neural network combined with a long short-term memory network(LSTM) is used to extract the spatiotemporal features of the photovoltaic output. Additionally, a neural network layer with non-shared parameters is employed to capture the coupling relationship between different photovoltaic stations and meteorological factors, enabling the forecasting of power generation across multiple stations. To reduce the error amplification caused by directly summing the predicted power of each station, a learnable weight layer is introduced into the model to obtain the total regional photovoltaic power. Finally, through comparative analysis with various forecasting models under multiple weather scenarios, the proposed method is validated for its accuracy and stability.
关键词(KeyWords):
分布式光伏;时空关联;气象因素;自适应图卷积神经网络
distributed photovoltaic system;spatiotemporal correlation;meteorological factors;adaptive graph convolutional neural network
基金项目(Foundation): 国家重点研发计划(2021YFB2601500);; 国网浙江省电力有限公司科技项目(52SBTZ240156)
作者(Author):
黄晓燕,郭洒洒,陈成优,徐腾翀,韩晓,王涛
HUANG Xiaoyan,GUO Sasa,CHEN Chengyou,XU Tengchong,HAN Xiao,WANG Tao
DOI: 10.19585/j.zjdl.202503009
参考文献(References):
- [1]陈维江,靳晓凌,吴鸣,等.双碳目标下我国配电网形态快速演进的思考[J].中国电机工程学报,2024,44(17):6811-6817.CHEN Weijiang,JIN Xiaoling,WU Ming,et al.Thinking on the rapid evolution of distribution network form under the carbon peaking and carbon neutrality goals[J]. Proceedings of the Chinese Society for Electrical Engineering,2024,44(17):6811-6817.
- [2]陈倩,朱婵霞,奚巍民,等.基于国际对标的风光新能源发电市场政策机制思考[J].电力建设,2024,45(6):120-129.CHEN Qian,ZHU Chanxia,XI Weimin,et al. Policy mechanism thinking for new energy power generation market based on international benchmarking[J]. Electric Power Construction,2024,45(6):120-129.
- [3] SUN X Q,LIN Y A,ZHU Z Y,et al.Optimized design of a distributed photovoltaic system in a building with phase change materials[J].Applied Energy,2022,306:118010.
- [4]杨龙月,任烜辰,蔡智鹏,等.高光伏渗透率配电网电压控制策略研究综述[J/OL].电网技术,1-19[2024-08-04].https://doi.org/10.13335/j.1000-3673.pst.2024.0408.YANG Longyue,REN Xuanchen,CAI Zhipeng,et al.Review of voltage control strategies for high PV penetration distribution networks[J/OL].Power System Technology,1-19[2024-08-04].https://doi.org/10.13335/j.1000-3673.pst.2024.0408.
- [5]杨康,李蓝青,李艺丰,等.一种新型分布式光伏出力区间预测方法[J].发电技术,2024,45(4):684-695.YANG Kang,LI Lanqing,LI Yifeng,et al.A novel distributed photovoltaic output interval prediction method[J].Power Generation Technology,2024,45(4):684-695.
- [6]于昊正,赵寒杰,李科,等.计及需求响应的分布式光伏集群承载能力评估[J].电力建设,2023,44(2):122-131.YU Haozheng,ZHAO Hanjie,LI Ke,et al.Carrying capacity evaluation of distribution network for distributed photovoltaic cluster considering user-side demand response[J].Electric Power Construction,2023,44(2):122-131.
- [7]张童彦,廖清芬,唐飞,等.基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J].中国电机工程学报,2023,43(20):7929-7939.ZHANG Tongyan,LIAO Qingfen,TANG Fei,et al.Wide-area distributed photovoltaic power forecast method based on meteorological resource interpolation and transfer learning[J].Proceedings of the CSEE,2023,43(20):7929-7939.
- [8] ZHANG Z Y,WANG J Z,XIA Y R,et al.Solar-mixer:an efficient end-to-end model for long-sequence photovoltaic power generation time series forecasting[J].IEEE Transactions on Sustainable Energy,2023,14(4):1979-1991.
- [9]杨茂,贾梦琦,张薇,等.基于功率重构和时序特性约束的长预见期光伏集群功率预测[J].电力系统自动化,2024,48(15):102-111.YANG Mao,JIA Mengqi,ZHANG Wei,et al.Power forecasting for photovoltaic cluster in long forecasting period based on power reconstruction and temporal characteristic constraints[J]. Automation of Electric Power Systems,2024,48(15):102-111.
- [10]张梓麒,陈中.主动配电网多元主体灵活性和随机性的转换机制与刻画方法[J].电力系统自动化,2024,48(13):79-88.ZHANG Ziqi,CHEN Zhong.Transformation mechanisms and characterization methods for flexibility and uncertainty in active distribution networks with multiple entities[J].Automation of Electric Power Systems,2024,48(13):79-88.
- [11]赵耀,高少炜,李东东,等.基于天气相似聚类与QRNN的短期光伏功率区间概率预测[J].电力系统自动化,2023,47(23):152-161.ZHAO Yao,GAO Shaowei,LI Dongdong,et al. Shortterm interval probability prediction of photovoltaic power based on weather similarity clustering and quantile regression neural network[J].Automation of Electric Power Systems,2023,47(23):152-161.
- [12] LI Y Y,SONG L D,ZHANG S,et al.A TCN-based hybrid forecasting framework for hours-ahead utility-scale PV forecasting[J]. IEEE Transactions on Smart Grid,2023,14(5):4073-4085.
- [13] LIU J X,ZANG H X,DING T,et al.Sky-image-derived deep decomposition for ultra-short-term photovoltaic power forecasting[J]. IEEE Transactions on Sustainable Energy,2024,15(2):871-883.
- [14] DU L F,ZHANG L H,WANG X.Generative adversarial framework-based one-day-ahead forecasting method of photovoltaic power output[J].IET Generation,Transmission&Distribution,2020,14(19):4234-4245.
- [15]栗峰,丁杰,周才期,等.新型电力系统下分布式光伏规模化并网运行关键技术探讨[J].电网技术,2024,48(1):184-196.LI Feng,DING Jie,ZHOU Caiqi,et al.Key technologies of large-scale grid-connected operation of distributed photovoltaic under new-type power system[J].Power System Technology,2024,48(1):184-196.
- [16] GUERMOUI M,BOUCHOUICHA K,BAILEK N,et al. Forecasting intra-hour variance of photovoltaic power using a new integrated model[J].Energy Conversion and Management,2021,245:114569.
- [17] WANG F,LI J N,ZHEN Z,et al.Cloud feature extraction and fluctuation pattern recognition based ultrashort-term regional PV power forecasting[J].IEEE Transactions on Industry Applications,2022,58(5):6752-6767.
- [18] LAI W Z,ZHEN Z,WANG F,et al.Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations[J].Energy,2024,288:129716.
- [19]张扬科,李刚,李秀峰.基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J].电力自动化设备,2021,41(11):205-210.ZHANGYangke,LI Gang,LI Xiufeng. Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J].Electric Power Automation Equipment,2021,41(11):205-210.
- [20]麻吕斌,潘国兵,蒋群,等.基于EOF-DBSCAN-GRU的分布式光伏集群出力预测方法研究[J].太阳能学报,2024,45(1):39-46.MA Lübin,PAN Guobing,JIANG Qun,et al.Research on distributed pv cluster power output forecasting method based on eof-dbscan-gru[J].Acta Energiae Solaris Sinica,2024,45(1):39-46.
- [21] ASIRI E C,CHUNG C Y,LIANG X D.Day-ahead prediction of distributed regional-scale photovoltaic power[J].IEEE Access,2023,11:27303-27316.
- [22] SHAN S,DING Z T,ZHANG K J,et al.ACGL-TR:a deep learning model for spatio-temporal short-term irradiance forecast[J]. Energy Conversion and Management,2023,284:116970.
- [23] LIU J C,LI T.Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model[J]. Energy,2024:130468.
- [24] WANG Z L,ZHU H Y,ZHANG D D,et al.Modelling of wind and photovoltaic power output considering dynamic spatio-temporal correlation[J].Applied Energy,2023,352:121948.
- [25] YUE H,ALI M M,LIN Y Z,et al.Ultra-short-term forecasting of large distributed solar PV fleets using sparse smart inverter data[J].IEEE Transactions on Sustainable Energy,2024,15(3):1968-1980.
- [26]欧阳永健,缪希仁,林蔚青,等.基于分层有向图与动态时空相关性的小区域光伏超短期预测方法[J].电网技术,2024,48(6):2458-2468.OUYANG Yongjian,MIAO Xiren,LIN Weiqing,et al.Small area PV ultra-short-term prediction method using stratified digraph and dynamic spatial-temporal correlation[J].Power System Technology,2024,48(6):2458-2468.
- [27] VERDONEA,SCARDAPANE S,PANELLA M. Explainable spatio-temporal graph neural networks for multisite photovoltaic energy production[J]. Applied Energy,2024,353:122151.
- [28] SIMEUNOVI?J,SCHUBNEL B,ALET P J,et al.Spatio-temporal graph neural networks for multi-site PV power forecasting[J]. IEEE Transactions on Sustainable Energy,2022,13(2):1210-1220.
- [29] WANG Y Q,FU W J,ZHANG X D,et al.Dynamic directed graph convolution network based ultra-short-term forecasting method of distributed photovoltaic power to enhance the resilience and flexibility of distribution network[J].IET Generation,Transmission&Distribution,2024,18(2):337-352.
- [30]王玉庆,徐飞,刘志坚,等.基于动态关联表征与图网络建模的分布式光伏超短期功率预测[J].电力系统自动化,2023,47(20):72-82.WANG Yuqing,XU Fei,LIU Zhijian,et al. Ultra-shortterm power forecasting of distributed photovoltaic based on dynamic correlation characterization and graph network modeling[J].Automation of Electric Power System,2023,47(20):72-82.
- [31]赵洪山,孙承妍,温开云,等.无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法[J].高电压技术,2024,50(1):65-73.ZHAO Hongshan,SUN Chengyan,WEN Kaiyun,et al.Ultra-short-term prediction of distributed photovoltaic power method based on AGCRN in the absence of meteorological information[J].High Voltage Engineering,2024,50(1):65-73.
- [32] BAI L,YAO L N,LI C,et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//34th Conference on Neural Information Processing Systems(NeurIPS 2020),Dec. 6-12,2020,Vancouver,Canada.CoRR,2020:17804-17815.
- [33]阮呈隆,李康平,李正辉,等.分布式光伏集群功率短期预测的空间互补特性初探[J].电力系统自动化,2024,48(3):42-50.RUAN Chenglong,LI Kangping,LI Zhenghui,et al.Preliminary study on spatial complementarity characteristics of short-term power prediction for distributed photovoltaic clusters[J].Automation of Electric Power Systems,2024,48(3):42-50.
- [34] KIM J,OBREGON J,PARK H,et al.Multi-step photovoltaic power forecasting using transformer and recurrent neural networks[J]. Renewable and Sustainable Energy Reviews,2024,200:114479.
- [35] HE Z C,ZHAO C N,HUANG Y Q.Multivariate time series deep spatiotemporal forecasting with graph neural network[J].Applied Sciences,2022,12(11):5731.
- 分布式光伏
- 时空关联
- 气象因素
- 自适应图卷积神经网络
distributed photovoltaic system - spatiotemporal correlation
- meteorological factors
- adaptive graph convolutional neural network