浙江电力

2023, v.42;No.322(02) 90-97

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多特征和LOF的用户负荷突变检测
Abrupt user load change detection based on multiple features and LOF algorithm

曾静,娄冰,吕娜,邓隽,王冠明
ZENG Jing,LOU Bing,LYU Na,DENG Jun,WANG Guanming

摘要(Abstract):

负荷突变对电网冲击力大,会造成电网频率和功率振荡。为了对复杂且大体量的用户负荷异常数据进行排查,提出了多特征与LOF(局部离群因子)算法相结合的检测方法。提取负荷数据统计特征平均值、标准差以及波形特征离散系数、峭度、波形因子和脉冲因子,经过PCA(主成分分析)降维后获得有效特征,并采用LOF算法对每天的用户负荷异常数据进行检测。此检测算法在以阿里云为基础的浙电数据中台中运行,结果表明所提方法能够每天定时在海量量测数据中将负荷突变的用户查找出来,实现了在线检测并具有较高的准确率。
The sudden load changes impact power grids by frequency and power oscillations. In order to distinguish the complex and massive abnormal user load data, this paper proposes a method combining multiple features and LOF(local outlier factor) algorithm. Firstly, the statistical characteristic mean value, standard deviation, waveform characteristic dispersion coefficient, kurtosis, waveform factor and pulse factor of load data are extracted, and the effective features are obtained through dimensionality reduction of PCA(principal component analysis). Furthermore, the LOF algorithm is used to detect abnormal user load data every day. This detection algorithm is used in the Zhejiang power data center based on Alibaba cloud. The results show that it can detect users with abrupt load changes in massive measured data at fixed times of every day and realizes online detection with high accuracy.

关键词(KeyWords): 机器学习;LOF算法;负荷突变;大数据
machine learning;LOF algorithm;abrupt load change;big data

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 曾静,娄冰,吕娜,邓隽,王冠明
ZENG Jing,LOU Bing,LYU Na,DENG Jun,WANG Guanming

DOI: 10.19585/j.zjdl.202302012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享