基于RVM-PF融合算法的锂离子电池剩余使用寿命预测Prediction of Remaining Useful Life of Lithium-ion Battery Based on RVM-PF Algorithm
郑伟彦,吴靖,许杰,苏芳,蒋燕萍
ZHENG Weiyan,WU Jing,XU Jie,SU Fang,JIANG Yanping
摘要(Abstract):
针对传统PF(粒子滤波)算法在锂离子电池RUL(剩余使用寿命)预测中出现的估计精度低、过于依赖电池经验模型等问题,提出一种RVM(相关向量机)算法与PF算法相融合的锂离子电池RUL预测方法。通过RVM算法提取电池容量数据的相关向量,同时利用RVM的回归能力拟合同型号电池容量衰减轨迹,基于衰减轨迹构建PF算法中的状态空间模型,预测当前工况下电池容量衰减趋势。最后,将传统PF算法和RVM-PF融合算法的预测性能进行对比。结果表明,所提出的融合算法具有状态跟踪拟合度高、预测精度高、长期预测能力好等特点,且融合算法不依赖电池经验模型,具有较强的通用性。
The traditional PF(particle filtering) algorithm is characterized by its poor estimation precision and overdependency on battery empirical model in RUL(remaining useful life) prediction of lithium-ion battery.This paper proposes an RUL prediction method that combines RVM(relevance vector machine) and PF algorithm. Relevant vectors of battery capacity data are extracted by RVM and the battery attenuation trajectory of the same type of battery is fitted by the regression algorithm of RVM. Based on the attenuation trajectory, the state space model of the particle filter algorithm in PF is established to predict battery capacity attenuation under the existing operating condition. Finally, the prediction performances of the traditional PF algorithm and the RVM-PF algorithm are compared. The results show that the proposed method has the advantages of high state tracking fitting degree, high prediction accuracy and great long-term prediction ability. The proposed method does not rely on the battery empirical model and is universal.
关键词(KeyWords):
锂离子电池;剩余使用寿命;粒子滤波;相关向量机
llithium-ion battery;remaining useful life;particle filter;relevant vector machine
基金项目(Foundation): 国网浙江省电力有限公司集体企业科技项目(HZJTK201906)
作者(Author):
郑伟彦,吴靖,许杰,苏芳,蒋燕萍
ZHENG Weiyan,WU Jing,XU Jie,SU Fang,JIANG Yanping
DOI: 10.19585/j.zjdl.202104008
参考文献(References):
- [1]郑志坤,赵光金,金阳,等.基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J].电工技术学报,2019,34(增刊1):388-395.
- [2]郭永芳,黄凯,李志刚.基于短时搁置端电压压降的快速锂离子电池健康状态预测[J].电工技术学报,2019,34(19):3968-3978.
- [3]刘大同,周建宝,郭力萌,等.锂离子电池健康评估和寿命预测综述[J].仪器仪表学报,2015,36(1):1-16.
- [4]LIU K.State estimation for advanced battery management:Key challenges and future trends[J].Renewable&Sustainable Energy Reviews,2019,114:109334.1-109334.13.
- [5]LIU K,KANG L I,PENG Q,et al.A brief review on key technologies in the battery management system of electric vehicles[J].Frontiers of Mechanical Engineering,2019,14(1):47-64.
- [6]XIONG R,LI L,LI Z,et al.An electrochemical model based degradation state identification method of lithiumion battery for all-climate electric vehicles application[J].Applied Energy,2018,219:264-275.
- [7]SCHMALSTIEG J,KAEBITZ S,ECKER M,et al.A holistic aging model for Li(NiMnCo)O2based 18650 lithiumion batteries[J].Journal of Power Sources,2014,257:325-334.
- [8]ASHWIN T R,BARAI A,UDDIN K,et al.Prediction of battery storage ageing and solid electrolyte interphase prop erty estimation using an electrochemical model[J].Journal of Power Sources,2018,385:141-147.
- [9]LIU K,HU X,YANG Z,et al.Lithiumion battery charging management considering economic costs of electrical energy loss and battery degradation[J].Energy Conversion and Management,2019,195:167-179.
- [10]TANG X,LIU K,WANG X,et al.Model migration neural network for predicting battery aging trajectories[J].IEEE Transactions on Transportation Electrification,2020,6(2):363-374.
- [11]RICHARDSON R R,OSBORNE M A,HOWEY D A.Gaussian process regression for forecasting battery state of health[J].Journal of Power Sources,2017,357:209-219.
- [12]YANG D,ZHANG X,PAN R,et al.A novel gaussian process regression model for state-of-health estimation of lithiumion battery using charging curve[J].Journal of Power Sources,2018,384:387-395.
- [13]CHEN L,CHEN J,WANG H,et al.Remaining useful life prediction of battery using a novel indicator and framework with fractional grey model and unscented particle filter[J].IEEE Transactions on Power Electronics,2020,35(6):5850-5859.
- [14]TANG X,LIU K,WANG X,et al.Real-time aging trajectory prediction using a base model-oriented gradientcorrection particle filter for Lithium-ion batteries[J].Journal of power sources,2019,440:227118.1-227118.11.
- [15]EL MEJDOUBI A,CHAOUI H,GUALOUS H.Lithiumion batteries health prognosis considering aging conditions[J].IEEE Transactions on Power Electronics,2019,34(7):6834-6844.
- [16]ZHANG L,MU Z,SUN C.Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J].IEEE ACCESS,2018,6:17729-17740.
- [17]张凝,徐皑冬,王锴,等.基于粒子滤波算法的锂离子电池剩余寿命预测方法研究[J].高技术通讯,2017,27(8):699-707.
- [18]DONG G Z,CHEN Z H,WEI J W,at al.Battery health prognosis using broenian motion modeling and particle filtering[J].IEEE Transactions on Industrial Electronics,2018,65(11):8646-8655.
- [19]TIPPING M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244.
- [20]黄小平,王岩,等.粒子滤波原理与应用[M].北京:电子工业出版社,2017.
- [21]罗悦.基于粒子滤波的锂离子电池剩余使用寿命预测方法研究[D].哈尔滨:哈尔滨工业大学,2012.
- [22]熊瑞.动力电池管理系统核心算法[M].北京:机械工业出版社,2018.
- [23]胡厚鹏,林晓明,钱斌,等.智慧家庭储能系统配置与运行双层优化[J].电力大数据,2020,23(11):55-62.
- [24]于童.梯次利用电池在储能电站中应用的可行性分析[J].山西电力,2020(4):11-13.
- [25]谢宝江,娄伟明,罗扬帆,等.基于H∞无迹卡尔曼滤波的退役锂离子电池SOC估计[J].浙江电力,2020,39(8):53-60.
- [26]闫广新,林雪峰.促进新疆新能源消纳中电化学储能容量需求分析[J].四川电力技术,2020,43(1):40-44.
- [27]吴良恕,张劲松,王亮.磷酸铁锂电池组多层混合主动均衡电路设计[J].浙江水利水电学院学报,2019,31(5):60-66.
- [28]郭精人,何丽娜,郭猷敏.电动汽车参与电网AGC的充放电优化控制研究[J].电力大数据,2019,22(8):21-27.
- [29]赵国龙,孙艳,项明明,等.基于物联网的变电站蓄电池监测系统设计与实现[J].电力大数据,2019,22(3):77-80.
- [30]张谦,蒋永梅,丁敏,等.基于光伏-蓄电池-超级电容的微电网协调控制策略[J].四川电力技术,2019,42(1):19-22.