基于时序运行模拟的新能源电力系统典型场景生成方法A typical scenario generation method for renewable energy power systems based on time-sequenced operational simulations
彭竹弈,宋杉,许偲轩,顾康慧,葛毅,王荃荃,孙文涛
PENG Zhuyi,SONG Shan,XU Sixuan,GU Kanghui,GE Yi,WANG Quanquan,SUN Wentao
摘要(Abstract):
传统基于源荷信息的聚类方法难以准确描述新能源电力系统的时序运行特征。为此,考虑电力系统交流潮流分布和机组启停策略,提出一种基于时序运行模拟的新能源电力系统典型场景生成方法。首先,构建计及交流潮流约束的机组组合模型,采用基于二阶锥松弛的两阶段求解策略,在多时段最优潮流模型中开展8 760 h时序模拟;其次,根据时序模拟结果的新能源出力水平、线路阻塞情况、机组启停情况等数据特征,采用改进的K-means算法提取典型场景;最后,通过算例分析验证提出方法的有效性,为新能源电力系统规划和调度提供参考依据。
Traditional clustering methods based on source-load information struggle to accurately describe the timesequenced operational characteristics of renewable energy power systems. To address this, a typical scenario generation method for renewable energy power systems based on time-sequenced operational simulations is proposed, considering both the AC power flow distribution and startup-shutoff strategies for units. Firstly, a unit combination model that incorporates AC power flow constraints is constructed, and a two-stage solution strategy based on secondorder cone relaxation is adopted to perform 8,760-hour time-sequenced simulations in the multi-period optimal power flow model. Secondly, based on data characteristics such as renewable energy output levels, line congestion conditions, and unit startup-shutoff from the time-sequenced simulation results, an improved K-means algorithm is employed to extract typical scenarios. Finally, the validity of the proposed method is verified through a case study, providing a reference for renewable energy power system planning and scheduling.
关键词(KeyWords):
全时序运行模拟;最优潮流;机组组合;二阶锥松弛;典型场景
full-time sequence simulation;optimal power flow;unit combination;second-order cone relaxation;typical scenario
基金项目(Foundation): 国网江苏省电力有限公司科技项目(J2023149)
作者(Author):
彭竹弈,宋杉,许偲轩,顾康慧,葛毅,王荃荃,孙文涛
PENG Zhuyi,SONG Shan,XU Sixuan,GU Kanghui,GE Yi,WANG Quanquan,SUN Wentao
DOI: 10.19585/j.zjdl.202505007
参考文献(References):
- [1]王放放,杨鹏威,赵光金,等.新型电力系统下火电机组灵活性运行技术发展及挑战[J].发电技术,2024,45(2):189-198.WANG Fangfang,YANG Pengwei,ZHAO Guangjin,et al. Development and challenge of flexible operation technology of thermal power units under new power system[J].Power Generation Technology,2024,45(2):189-198.
- [2]潘祺,赵晋泉,王岗,等.消纳新能源引发的系统平衡成本解析及计算方法[J].电力系统自动化,2024,48(14):61-68.PAN Qi,ZHAO Jinquan,WANG Gang,et al.Analytical and computational method for system balancing cost caused by renewable energy accommodation[J].Automation of Electric Power Systems,2024,48(14):61-68.
- [3]杨锡勇,张仰飞,林纲,等.考虑需求响应的源-荷-储多时间尺度协同优化调度策略[J].发电技术,2023,44(2):253-260.YANG Xiyong,ZHANG Yangfei,LIN Gang,et al.Multitime scale collaborative optimal scheduling strategy for source-load-storage considering demand response[J].Power Generation Technology,2023,44(2):253-260.
- [4]安之,魏楠,刘斯伟,等.基于生产模拟的新型输电网规划方案效率效益评价方法[J].电网与清洁能源,2024,40(2):73-83.AN Zhi,WEI Nan,LIU Siwei,et al.An efficiency and benefit evaluation method for new transmission network planning based on production simulation[J]. Power System and Clean Energy,2024,40(2):73-83.
- [5]叶清泉,吴明启,吴旭光,等.基于ADMM的多区域直流系统完全分布式最优潮流算法[J].浙江电力,2024,43(2):13-24.YE Qingquan,WU Mingqi,WU Xuguang,et al. A fully distributed optimal power flow algorithm for multiregional DC systems based on ADMM[J].Zhejiang Electric Power,2024,43(2):13-24.
- [6]赵飞,樊雪君,李亚楼,等.基于迭代隐式线性化的网状配电网潮流计算及其最优潮流模型[J].中国电机工程学报,2024,44(6):2197-2208.ZHAO Fei,FAN Xuejun,LI Yalou,et al.Iterative implicit linearization based power flow calculation and optimal power flow model for meshed distribution networks[J].Proceedings of the CSEE,2024,44(6):2197-2208.
- [7]武新章,郭苏杭,代伟,等.基于特征降维与分块的输电网概率最优潮流深度学习方法[J].电力自动化设备,2023,43(8):174-180.WU Xinzhang,GUO Suhang,DAI Wei,et al.Feature dimension reduction and partitioning based deep learning method for probabilistic optimal power flow of transmission network[J].Electric Power Automation Equipment,2023,43(8):174-180.
- [8] KOCUK B,DEY S S,SUN X A.Inexactness of SDP relaxation and valid inequalities for optimal power flow[J].IEEE Transactions on Power Systems,2016,31(1):642-651.
- [9] DEMIROVIC N,TESNJAK S,TOKIC A.Hot start and warm start in LP based interior point method and it’s application to multiperiod optimal power flows[C]//2006IEEE PES Power Systems Conference and Exposition.October 29-November 1,2006,Atlanta,GA,USA.IEEE,2006:699-704.
- [10] SCHANEN M,GILBERT F,PETRA C G,et al. Toward multiperiod AC-based contingency constrained optimal power flow at large scale[C]//2018 Power Systems Computation Conference(PSCC).June 11-15,2018,Dublin,Ireland.IEEE,2018:1-7.
- [11] CARRION M,ARROYO J M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems,2006,21(3):1371-1378.
- [12]辛业春,张一峰,徐广健.基于二阶锥优化的交直流系统多目标最优潮流研究[J].电测与仪表,2021,58(9):48-56.XIN Yechun,ZHANG Yifeng,XU Guangjian. Research on multi-objective optimal power flow of AC/DC system based on second-order cone optimization[J]. Electrical Measurement&Instrumentation,2021,58(9):48-56.
- [13]唐雅洁,阎洁,李玉浩,等.基于深度嵌入聚类的风光水典型联合出力场景提取[J].浙江电力,2023,42(4):36-44.TANG Yajie,YAN Jie,LI Yuhao,et al.Extraction of typical combined output scenarios of wind-solar-hydropower generation based on deep embedding clustering[J].Zhejiang Electric Power,2023,42(4):36-44.
- [14] FATTAHI S,ASHRAPHIJUO M,LAVAEI J,et al.Conic relaxations of the unit commitment problem[J].Energy,2017,134:1079-1095.
- [15]董骁翀,张姝,李烨,等.电力系统中时序场景生成和约简方法研究综述[J].电网技术,2023,47(2):709-721.DONG Xiaochong,ZHANG Shu,LI Ye,et al.Review of power system temporal scenario generation and reduction methods[J]. Power System Technology,2023,47(2):709-721.
- [16] XIE J Y,GIRSHICK R,FARHADI A,et al. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. June19-24,2016,New York,NY,USA.ACM,2016:478-487.
- [17] YANG B,FU X,SIDIROPOULOS N D,et al.Towards K-means-friendly spaces:simultaneous deep learning and clustering[EB/OL].2016:1610.04794.https://arxiv.org/abs/1610.04794v2.
- [18]张嘉敏,蔡晔,唐夏菲,等.考虑源荷不确定性的信息间隙决策理论-谱聚类典型场景生成方法[J/OL].上海交通大学学报,1-28[2024-08-23]. https://doi. org/10.16183/j.cnki.jsjtu.2023.580.ZHANG Jiamin,CAI Y1,TANG Xiafei,et al.Clustering typical scenario generation method considering source load uncertainty[J/OL].Journal of Shanghai Jiaotong University,1-28[2024-08-23].https://doi.org/10.16183/j.cnki.jsjtu.2023.580.
- [19]吴艳梅,陈红坤,陈磊,等.基于改进MMD-GAN的可再生能源随机场景生成[J].电力系统保护与控制,2024,52(19):85-96.WU Yanmei,CHEN Hongkun,CHEN Lei,et al.Stochastic scenario generation for renewable energy based on improved MMD-GAN[J]. Power System Protection and Control,2024,52(19):85-96.
- [20]罗萍萍,盛奥,林济铿,等.基于可解释性条件生成对抗网络的台风气象负荷场景生成方法[J].电力系统自动化,2025,49(2):186-197.LUO Pingping,SHENG Ao,LIN Jikeng,et al. Scenario generation method of typhoon meteorological load based on interpretability conditional generative adversarial network[J].Automation of Electric Power Systems,2025,49(2):186-197.
- [21]于琳琳,贾鹏,杨游航,等.计及短路比约束的新能源场站布点及网架协调规划方法[J].电力建设,2024,45(10):24-33.YU Linlin,JIA Peng,YANG Youhang,et al.Coordinated planning method for new energy station siting and network considering short circuit ratio constraints[J]. Electric Power Construction,2024,45(10):24-33.
- [22] TUNCER D,KOCUK B.An MISOCP-based decomposition approach for the unit commitment problem with AC power flows[J]. IEEE Transactions on Power Systems,2023,38(4):3388-3400.
- [23]林哲,胡泽春,宋永华.最优潮流问题的凸松弛技术综述[J].中国电机工程学报,2019,39(13):3717-3728.LIN Zhe,HU Zechun,SONG Yonghua. Convex relaxation for optimal power flow problem:a recent review[J].Proceedings of the CSEE,2019,39(13):3717-3728.
- [24]徐奇锋,王激华,乔松博,等.考虑源-荷匹配的区域电网风光储容量规划-运行联合优化方法[J].电力建设,2024,45(8):85-96.XU Qifeng,WANG Jihua,QIAO Songbo,et al.Planning and operation joint optimization method for wind,solar,and energy storage capacity in regional power grids considering source load matching[J]. Electric Power Construction,2024,45(8):85-96.
- [25]赵宏兴,肖建平,乔中鹏,等.电碳耦合市场环境下电力系统运行模拟方法[J].电力建设,2023,44(7):50-56.ZHAO Hongxing,XIAO Jianping,QIAO Zhongpeng,et al.Study on power system operation simulation method in electric-carbon coupling market environment[J]. Electric Power Construction,2023,44(7):50-56.
- 全时序运行模拟
- 最优潮流
- 机组组合
- 二阶锥松弛
- 典型场景
full-time sequence simulation - optimal power flow
- unit combination
- second-order cone relaxation
- typical scenario