GIS抗震性能仿真分析研究Simulation and Analysis on Seismic Performance of GIS
高洋,沈丰慧
GAO Yang,SHEN Fenghui
摘要(Abstract):
以实体结构为原型建立某363 kV GIS(气体绝缘开关设备)的有限元模型,使用ANSYS Workbench软件并根据GB/T 13540—2009规范中响应频谱对该GIS进行了抗震分析,得出地震载荷组合工况下的仿真计算结果。对比分析套管支架结构降本增效(以下简称"降本")前整体GIS结构与套管支架结构降本后整体GIS结构的振动特性,得出套管支架结构降本前及降本后整体GIS的动力响应。结果表明:降本前与降本后的GIS结构均满足AG5(0.5 g)抗震水平要求,瓷套管顶部会产生较大位移,结构重心位置降低能提高整体结构固有频率,降低结构各主要部件应力值。套管支架应力降本前为220.4 MPa,降本后为195.02 MPa,降本后支架满足强度要求,有利于GIS长期安全运行。
A finite element model of some type of 363 kV GIS(gas insulated switchgear) is built based on the entity structure, and ANSYS Workbench software is used for seismic performance analysis of the GIS based on the response spectrum method and according to the national standard GB/T 13540—2009 to obtain simulation and calculation result under combined operating condition of seismic load. The vibration characteristics of the whole GIS structure before and after the cost reduction and efficiency improvement(hereinafter referred to as cost reduction) of the casing support structure were compared and analyzed. The dynamic response of the whole GIS structure before and after the cost reduction of the casing support structure was obtained. The re sults show that GIS structures before and after the cost reduction both meet the antiseismic level of AG5(0.5 g)and large displacement occur on the top of porcelain casing. The barycenter drop can increase the natural frequency of the whole structure and decrease the stress values of the main components of the structure. The stress of casing support is 220.4 MPa before cost reduction and 195.02 MPa after cost reduction. The support meets the strength requirements after cost reduction and is conducive to long-term safe operation of GIS.
关键词(KeyWords):
GIS;有限元分析;响应谱法;结构重心;抗震性能
GIS;finite element analysis;response-spectrum method;structural barycenter;seismic performance
基金项目(Foundation):
作者(Author):
高洋,沈丰慧
GAO Yang,SHEN Fenghui
DOI: 10.19585/j.zjdl.202112014
参考文献(References):
- [1]林莘.现代高压电器技术[M].北京:机械工业出版社,2002.
- [2]林莘,李丹,徐建源.800 kV GIS高压开关设备抗震性能分析[J].高压电器,2015,51(5):8-13.
- [3]曹永兴,邓鹤鸣,蔡炜,等.电力设施应对地震及其次生灾害的研究进展[J].高电压技术,2019,45(6):1962-1974.
- [4]金霄平.GIS高压电气设备抗震性能试验研究[J].工程设备与材料,2019,20:0141-02.
- [5]程永锋,朱祝兵,等.变电站电气设备抗震研究现状及进展[J].建筑结构,2019,49(增刊2):356-361.
- [6]马冬豹.输变电电气设备典型结构的抗震性能研究[D].西安:西安建筑科技大学,2012.
- [7]CAGNAN Z,DAVIDSON R.Post-earthquake lifeline service restoration modeling[J].Earthquake Engineering and Structural Dynamics,2003,27:255-264.
- [8]Song Junho,Der Kiureghian Armen.Reliability of Electri cal Substation Equipment Connected by Rigid Bus[A].13th WCEE,2004.
- [9]李学斌,罗斌,等.550 kV GIS高压开关设备抗震性能分析[J].东北电力技术,2016,37(2):1-4.
- [10]李宁,林莘.550 kV GIS设备在地震行波效应下的位移、应力分析[J].东北电力技术,2016,37(2):13-16.
- [11]杨涛,王社良,等.GIS高压电气设备抗震性能试验研究[J].世界地震工程,2016,32(1):146-154.
- [12]孙帮新,曹枚根.特高压新松换流站直流场设备抗震设计及能力考核[J].高压电器,2018,54(12):24-35.
- [13]谢强,边晓旭,等.全户内变电站楼面电气设备抗震设计方法[J].高电压技术,2020,46(6):2155-2163.
- [14]樊庆玲,陈晨,等.户内变电站楼面GIS电气设备地震响应分析[J].高压电器,2020,56(9):0240-0245.
- [15]何畅,谢强,杨振宇.1 100 kV特高压气体绝缘开关套管-支架体系抗震性能加固试验研究[J].电网技术,2018,42(6):2016-2022.
- [16]王晓游,谢强,罗兵,等.±800 kV GIS穿墙套管的地震响应与振动控制[J].高压电器,2018,54(1):16-22.
- [17]王革鹏,帅远明.550 kV油纸电容式套管抗震性能的研究[J].高压电器,2020,56(5):203-208.
- [18]王海菠,程永峰,等.特高压气体绝缘开关设备瓷套管抗震性能研究[J].地震工程学报,2018,40(3):406-412.
- [19]孙宇晗,程永峰,等.特高压GIS瓷质套管与复合套管抗震性能试验研究[J].高电压技术,2019,45(2):541-548.
- [20]石高扬,唐程,等.特高压GIS复合套管地震模拟振动台试验研究[J].电瓷避雷器,2021(2):116-122.
- [21]姜楠.企业降本增效问题研究[J].管理观察,2019(8):24-25.
- [22]张淼.探讨企业降本增效的经营管理策略[J].商讯,2021(23):116-122.
- [23]秦林川,裴君雷.强化关键要素优化管理促进企业降本增效[J].中国煤炭工业,2018(7):30-32.
- [24]刘新,张刚.组合电器耐地震计算分析[J].机械传动,2010,34(6):65-67.
- [25]Aluminium and aluminium alloys-castings chemical composition and mechanical properties:DIN EN 1706[S].European Standard EN 1706,1997.
- [26]张仲孝.关于提高电气设备抗震能力问题的探讨[J].工程抗震,1994,16(2):43-45.
- [27]吴小峰,孙启国,狄洁建,等.抗震分析响应谱法和时程分析法数值仿真比较[J].西北地震学报,2011,33(3):275-278.
- [28]高压开关设备和控制设备的抗震要求:GB/T 13540—2009[S].北京:中国标准出版社,2009.
- [29]黎斌.SF6高压电器设计[M].北京:机械工业出版社,2010.
- [30]夏拓,王蕾,何荣涛,等.110 kV GIS抗震仿真分析[J].厦门理工学院学报,2015,23(5):35-40.
- GIS
- 有限元分析
- 响应谱法
- 结构重心
- 抗震性能
GIS - finite element analysis
- response-spectrum method
- structural barycenter
- seismic performance