基于机会约束的风光荷储热灵活性资源优化调度Optimal scheduling of WPLSH flexibility resources based on chance constraints
苗秋愿,邢海军
MIAO Qiuyuan,XING Haijun
摘要(Abstract):
高比例可再生能源并网带来的波动性和不确定性,对新型电力系统安全经济运行带来了重大挑战。针对这一问题,提出了一种计及风光荷储热协同的灵活性资源优化调度方法,可在提高多维度灵活性资源调节能力的同时降低经济成本。首先,引入灵活性量化指标,构建风光荷储热的灵活性资源供需特性模型;接着,利用SOT(序列运算理论)获得风光联合出力概率;然后,以总运行成本最小为优化目标,基于灵活性供需特性模型及概率序列构建函数,采用CCP(机会约束规划)将优化调度模型转化为MILP(混合整数线性规划)进行求解。最后,通过对内蒙古某地区电网的实际数据进行案例分析,验证了所提调度方法的有效性。
The integration of high-penetration renewable energy introduces significant volatility and uncertainty, posing critical challenges to the secure and economic operation of modern power systems. To address this issue, this paper proposes an optimal scheduling method for wind-PV-load-storage-heat(WPLSH) flexibility resources. This method enhances multi-dimensional regulation capability while reducing operational costs. Firstly, flexibility quantification indices are introduced to model the supply-demand characteristics of WPLSH flexibility resources. Subsequently, sequence operation theory(SOT) is employed to derive the joint probability of wind-PV power output. Then, taking the minimization of total operational costs as the optimization objective, a mathematical function is constructed based on the flexibility supply-demand characteristic model and probability sequences. Using chance constrained programming(CCP), the optimal scheduling model is transformed into a mixed-integer linear programming(MILP) problem for solution. Finally, case studies using real-world grid data from Inner Mongolia demonstrate the method's effectiveness.
关键词(KeyWords):
风光荷储热;灵活性量化;不确定性;优化调度
WPLSH;flexibility quantification;uncertainty;optimal scheduling
基金项目(Foundation): 国家自然科学基金(52477106)
作者(Author):
苗秋愿,邢海军
MIAO Qiuyuan,XING Haijun
DOI: 10.19585/j.zjdl.202508006
参考文献(References):
- [1]卓振宇,张宁,谢小荣,等.高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化,2021,45(9):171-191.ZHUO Zhenyu,ZHANG Ning,XIE Xiaorong,et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J].Automation of Electric Power Systems,2021,45(9):171-191.
- [2]张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819.ZHANG Zhigang,KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE,2022,42(8):2806-2819.
- [3]许洪强,姚建国,於益军,等.支撑一体化大电网的调度控制系统架构及关键技术[J].电力系统自动化,2018,42(6):1-8.XU Hongqiang,YAO Jianguo,YU Yijun,et al.Architecture and key technologies of dispatch and control system supporting integrated bulk power grids[J].Automation of Electric Power Systems,2018,42(6):1-8.
- [4]周福举,荆江平,马智刚,等.计及源网荷储协同的有源配电网检修计划两阶段随机优化模型[J].智慧电力,2024,52(11):64-71.ZHOU Fuju,JING Jiangping,MA Zhigang,et al. Twostage stochastic optimization model for active distribution network maintenance plan considering source-networkload-storage coordination[J].Smart Power,2024,52(11):64-71.
- [5]陈寒,唐忠,鲁家阳,等.基于CVaR量化不确定性的微电网优化调度研究[J].电力系统保护与控制,2021,49(5):105-115.CHEN Han,TANG Zhong,LU Jiayang,et al. Research on optimal dispatch of a microgrid based on CVaR quantitative uncertainty[J].Power System Protection and Control,2021,49(5):105-115.
- [6]党瑞,邹蕴韬,侯丹,等.风光发电制氢供电系统稳态运行研究[J].电力电容器与无功补偿,2023,44(6):23-31.DANG Rui,ZOU Yuntao,HOU Dan,et al.Research on steady state operation of hydrogen production power supply system for wind and solar power generation[J].Power Capacitor&Reactive Power Compensation,2023,44(6):23-31.
- [7]车泉辉,吴耀武,祝志刚,等.基于碳交易的含大规模光伏发电系统复合储能优化调度[J].电力系统自动化,2019,43(3):76-82.CHE Quanhui,WU Yaowu,ZHU Zhigang,et al.Carbon trading based optimal scheduling of hybrid energy storage system in power systems with large-scale photovoltaic power generation[J].Automation of Electric Power Systems,2019,43(3):76-82.
- [8] MI Y Z,LIU C Y,YANG J Y,et al.Low-carbon generation expansion planning considering uncertainty of renewable energy at multi-time scales[J].Global Energy Interconnection,2021,4(3):261-272.
- [9]孙一凡,许子芸,王林.计及多时间尺度灵活性的电-气互联系统优化调度方法[J].浙江电力,2023,42(7):9-17.SUN Yifan,XU Ziyun,WANG Lin. Optimal scheduling method for electricity-gas interconnected system considering multi-time-scale flexibility[J]. Zhejiang Electric Power,2023,42(7):9-17.
- [10]张紫菁,张芳,姚文鹏.基于风电出力概率预测模型的源荷储日前概率优化调度[J].电力自动化设备,2022,42(7):190-197.ZHANG Zijing,ZHANG Fang,YAO Wenpeng. Dayahead probabilistic optimal dispatching of source-loadstorage based on probabilistic prediction model of wind power output[J].Electric Power Automation Equipment,2022,42(7):190-197.
- [11] DI SOMMA M,GRADITI G,SIANO P. Optimal bidding strategy for a DER aggregator in the day-ahead market in the presence of demand flexibility[J].IEEE Transactions on Industrial Electronics,2019,66(2):1509-1519.
- [12]李洋,尹逊虎,张思,等.考虑多元发电资源灵活性的电力系统紧急调峰调度方法[J].浙江电力,2023,42(8):37-45.LI Yang,YIN Xunhu,ZHANG Si,et al.Emergency peak shaving dispatching method for power system considering flexibility of multiple power generation resources[J].Zhejiang Electric Power,2023,42(8):37-45.
- [13]郇政林,刘杰,徐沈智,等.面向高比例新能源接入的源-荷-储灵活性资源协调规划[J].电网与清洁能源,2022,38(7):107-117.HUAN Zhenglin,LIU Jie,XU Shenzhi,et al.Source-loadstorage flexibility resource coordinated planning for high proportion of renewable energy[J]. Power System and Clean Energy,2022,38(7):107-117.
- [14] XU J Y,WANG F M,SU N,et al.Two-layer generation expansion planning based on flexibility balance[J]. IEEE Access,2023,11:2597-2609.
- [15]林顺富,张琪,沈运帷,等.考虑灵活性互济的跨区电网灵活性资源优化调度策略[J].电力建设,2023,44(8):71-81.LIN Shunfu,ZHANG Qi,SHEN Yunwei,et al.Optimal dispatching strategy of flexible resources considering flexible mutual aid among regional grid[J]. Electric Power Construction,2023,44(8):71-81.
- [16]杨策,孙伟卿,韩冬.考虑新能源消纳能力的电力系统灵活性评估方法[J].电网技术,2023,47(1):338-349.YANG Ce,SUN Weiqing,HAN Dong. Power system flexibility evaluation considering renewable energy accommodation[J]. Power System Technology,2023,47(1):338-349.
- [17]崔杨,邓贵波,曾鹏,等.计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J].中国电机工程学报,2022,42(16):5869-5886.CUI Yang,DENG Guibo,ZENG Peng,et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE,2022,42(16):5869-5886.
- [18] LI Y,YANG Z,LI G Q,et al.Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties[J].IEEE Transactions on Industrial Electronics,2019,66(2):1565-1575.
- [19]夏鹏,刘文颖,蔡万通,等.基于风电离散化概率序列的机会约束规划优化调度方法[J].电工技术学报,2018,33(21):5069-5079.XIA Peng,LIU Wenying,CAI Wantong,et al. Optimal scheduling method of chance constrained programming based on discrete wind power probability sequences[J].Transactions of China Electrotechnical Society,2018,33(21):5069-5079.
- [20] RAYATI M,BOZORG M,CHERKAOUI R,et al.Distributionally robust chance constrained optimization for providing flexibility in an active distribution network[J].IEEE Transactions on Smart Grid,2022,13(4):2920-2934.
- [21] WANG M,WU C,ZHANG P,et al.Multiscale dynamic correlation analysis of wind-PV power station output based on TDIC[J].IEEE Access,2020,8:200695-200704.
- [22]余光正,崔朝越,汤波,等.基于灵活性资源与风电协同互动可行域的鲁棒优化调度策略[J].现代电力,2024,41(5):801-812.YU Guangzheng,CUI Chaoyue,TANG Bo,et al.Robust optimal scheduling strategy based on feasible region of cooperative interaction between flexible resources and wind power[J].Modern Electric Power,2024,41(5):801-812.
- [23]夏爱明,伍雪冬.基于改进多目标海樽群算法的电力系统优化调度[J].电测与仪表,2023,60(7):77-82.XIA Aiming,WU Xuedong. A improved multi-objective salp swarm algorithm for optimization dispatch of power system[J]. Electrical Measurement&Instrumentation,2023,60(7):77-82.
- [24]王译旋,杨用春,高长征.计及典型日选取与源荷灵活性调节的优化调度研究[J].电力系统保护与控制,2024,52(10):1-10.WANG Yixuan,YANG Yongchun,GAO Changzheng.Optimal scheduling considering typical day selection and source load flexibility adjustment[J].Power System Protection and Control,2024,52(10):1-10.