浙江电力

2022, v.41;No.320(12) 63-70

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进鲸鱼算法的配电网故障区段定位
Fault section location of distribution networks based on an improved whale algorithm

张莲,张尚德,贾浩,赵梦琪,赵娜,李多
ZHANG Lian,ZHANG Shangde,JIA Hao,ZHAO Mengqi,ZHAO Na,LI Duo

摘要(Abstract):

配电网故障区段准确定位是保证供电可靠性和自愈性的重要因素。在提取分析自动化监测装置的故障特征信息基础上,构建了适用于多状态不同分布式电源的开关函数和适应度函数,并引入故障辅助判据改进传统适应度函数。提出了多策略改进的鲸鱼优化算法,运用Sobol序列获得均匀分布的初始种群,并引入差分变异微扰因子和自适应权重,提高了寻优精度和收敛速度。算例仿真结果表明,采用多策略改进鲸鱼优化算法进行故障区段定位不仅具有较强的容错性,还有较高的故障辨识率和寻优稳定性,提高了故障定位的求解效率。
Accurate location of the fault section in distribution networks is essential in ensuring power supply reliability and self-healing. Based on the extraction and analysis of fault feature information of automatic monitoring devices, this paper constructs the switching function and fitness function suitable for multi-state and different distributed power sources. It introduces additional fault criteria to improve the traditional fitness function. Moreover, it proposes an improved whale optimization algorithm based on multiple strategies. It uses the Sobol sequence to obtain a uniformly distributed initial population and uses differential variation perturbation factor and adaptive weight to improve the optimization accuracy and convergence speed. The simulation on an example shows that the improved whale optimization algorithm used in fault location is characterized by its strong fault tolerance, high fault identification rate, and optimization stability; Moreover, the algorithm can enhance the solution efficiency of fault location.

关键词(KeyWords): 改进鲸鱼优化算法;故障定位;故障辅助判据;Sobol序列;差分变异微扰因子
improved whale optimization algorithm(IWOA);fault location;auxiliary fault criterion;Sobol sequence;differential variation perturbation factor

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(61402063)

作者(Author): 张莲,张尚德,贾浩,赵梦琪,赵娜,李多
ZHANG Lian,ZHANG Shangde,JIA Hao,ZHAO Mengqi,ZHAO Na,LI Duo

DOI: 10.19585/j.zjdl.202212008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享