基于改进鲸鱼算法的配电网故障区段定位Fault section location of distribution networks based on an improved whale algorithm
张莲,张尚德,贾浩,赵梦琪,赵娜,李多
ZHANG Lian,ZHANG Shangde,JIA Hao,ZHAO Mengqi,ZHAO Na,LI Duo
摘要(Abstract):
配电网故障区段准确定位是保证供电可靠性和自愈性的重要因素。在提取分析自动化监测装置的故障特征信息基础上,构建了适用于多状态不同分布式电源的开关函数和适应度函数,并引入故障辅助判据改进传统适应度函数。提出了多策略改进的鲸鱼优化算法,运用Sobol序列获得均匀分布的初始种群,并引入差分变异微扰因子和自适应权重,提高了寻优精度和收敛速度。算例仿真结果表明,采用多策略改进鲸鱼优化算法进行故障区段定位不仅具有较强的容错性,还有较高的故障辨识率和寻优稳定性,提高了故障定位的求解效率。
Accurate location of the fault section in distribution networks is essential in ensuring power supply reliability and self-healing. Based on the extraction and analysis of fault feature information of automatic monitoring devices, this paper constructs the switching function and fitness function suitable for multi-state and different distributed power sources. It introduces additional fault criteria to improve the traditional fitness function. Moreover, it proposes an improved whale optimization algorithm based on multiple strategies. It uses the Sobol sequence to obtain a uniformly distributed initial population and uses differential variation perturbation factor and adaptive weight to improve the optimization accuracy and convergence speed. The simulation on an example shows that the improved whale optimization algorithm used in fault location is characterized by its strong fault tolerance, high fault identification rate, and optimization stability; Moreover, the algorithm can enhance the solution efficiency of fault location.
关键词(KeyWords):
改进鲸鱼优化算法;故障定位;故障辅助判据;Sobol序列;差分变异微扰因子
improved whale optimization algorithm(IWOA);fault location;auxiliary fault criterion;Sobol sequence;differential variation perturbation factor
基金项目(Foundation): 国家自然科学基金资助项目(61402063)
作者(Author):
张莲,张尚德,贾浩,赵梦琪,赵娜,李多
ZHANG Lian,ZHANG Shangde,JIA Hao,ZHAO Mengqi,ZHAO Na,LI Duo
DOI: 10.19585/j.zjdl.202212008
参考文献(References):
- [1]谢李为,李勇,罗隆福,等.基于距离矩阵与分支系数的配电网故障定位方法[J].中国电机工程学报,2020,40(7):2180-2191.
- [2]郑涛,马龙,李博文.基于馈线终端装置信息畸变校正的有源配电网故障区段定位[J].电网技术,2021,45(10):3926-3935.
- [3]杜红卫,孙雅明,刘弘靖,等.基于遗传算法的配电网故障定位和隔离[J].电网技术,2000,24(5):52-55.
- [4]卫志农,何桦,郑玉平.配电网故障区间定位的高级遗传算法[J].中国电机工程学报,2002,22(4):127-130.
- [5]刘鹏程,李新利.基于多种群遗传算法的含分布式电源的配电网故障区段定位算法[J].电力系统保护与控制,2016,44(2):36-41.
- [6]李超文,何正友,张海平,等.基于二进制粒子群算法的辐射状配电网故障定位[J].电力系统保护与控制,2009,37(7):35-39.
- [7]钟建伟,朱涧枫,黄秀超,等.基于双态二进制粒子群优化算法的配电网故障定位[J].电力系统及其自动化学报,2019,31(3):29-34.
- [8]刘蓓,汪沨,陈春,等.和声算法在含DG配电网故障定位中的应用[J].电工技术学报,2013,28(5):280-284.
- [9]甄永琦,蒋伟.改进灰狼算法在配电网故障定位中的应用[J].计算机应用与软件,2020,37(11):200-205.
- [10]郭壮志,徐其兴,洪俊杰,等.配电网故障区段定位的互补约束新模型与算法[J].中国电机工程学报,2016,36(14):3742-3751.
- [11]高锋阳,李昭君,袁成,等.量子计算和免疫优化算法相结合的有源配电网故障定位[J].高电压技术,2021,47(2):396-406.
- [12]倪广魁,鲍海,张利,等.基于零序电流突变量的配电网单相故障带电定位判据[J].中国电机工程学报,2010,30(31):118-122.
- [13]张利,杨鹏,司冬梅,等.基于零序功率方向的中性点不接地系统在线故障定位[J].电力系统自动化,2008,32(17):79-82.
- [14]牛耕,周龙,裴玮,等.基于克拉克电流相角差值的低压有源配电网故障定位方法[J].中国电机工程学报,2015,35(增刊1):15-24.
- [15]张姝,杨健维,何正友,等.基于线路暂态重心频率的配电网故障区段定位[J].中国电机工程学报,2015,35(10):2463-2470.
- [16] MIRJALILI S,LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67.
- [17]孙琪,于永进,王玉彬,等.采用改进鲸鱼算法的配电网综合优化[J].电力系统及其自动化学报,2021,33(5):22-29.
- [18]孔芝,杨青峰,赵杰,等.基于自适应调整权重和搜索策略的鲸鱼优化算法[J].东北大学学报(自然科学版),2020,41(1):35-43.
- [19]冯文涛,宋科康.一种增强型鲸鱼优化算法[J].计算机仿真,2020,37(11):275-279.
- [20]吴小龙,胡松,成卫.基于改进鲸鱼优化算法的多目标信号配时优化[J].昆明理工大学学报(自然科学版),2021,46(1):134-141.
- [21]张颖,许欣.基于蚁群退火算法的配电网故障定位研究[J].电器与能效管理技术,2021(9):85-90.
- [22]洪书文,李悦,周威,等.配电网经消弧接地系统不对称度对高阻接地故障选线影响研究[J].电瓷避雷器,2021(1):103-110.
- 改进鲸鱼优化算法
- 故障定位
- 故障辅助判据
- Sobol序列
- 差分变异微扰因子
improved whale optimization algorithm(IWOA) - fault location
- auxiliary fault criterion
- Sobol sequence
- differential variation perturbation factor