浙江电力

2020, v.39;No.291(07) 60-65

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于RF-CPSO-LSSVM的日线损率置信区间预测研究
Confidence Interval Forecasting of Daily Line Loss Rate Based on RF-CPSO-LSSVM

郁家麟,顾韬,沈浚,周金飞,汪东耀,徐晓丁
YU Jialin,GU Tao,SHEN Jun,ZHOU Jinfei,WANG Dongyao,XU Xiaoding

摘要(Abstract):

针对当前台区拓扑数据不全所造成的传统理论线损计算方法不适用的现状,提出了基于RF(随机森林)-CPSO(混沌粒子群)-LSSVM(最小二乘支持向量机)算法的日线损率置信区间预测研究方法。采用RF算法对造成线损的特征按重要性进行排序,计算各特征的累计贡献率并进行筛选;利用CPSO算法对LSSVM算法的惩罚因子C, g进行参数寻优以获得最佳预测模型,选取95%置信度下的理论线损置信区间作为预测结果。以浙江某市台区线损数据进行验证,结果表明,RF-CPSO-LSSVM算法比传统LSSVM, PSO-LSSVM和APSO-LSSVM算法预测日线损率置信区间结果更加精确,改进效果明显。
Given the inapplicability of the traditional theoretical line loss calculation method caused by the incomplete topological data of the current station area, a confidence interval prediction study method of daily line loss rate based on RF(random forest)-CPSO(chaos particle swamp optimization)-LSSVM(least square support vector machine) algorithm is proposed. Firstly, the RF algorithm is used to rank the importance of the features causing line loss, and the cumulative contribution rate of each feature is calculated for screening.CPSO algorithm is used for optimizing penalty factor C and g of LSSVM to obtain the best prediction model;confidence interval of theoretical line loss under the confidence level of 95% is selected for forecasting and line loss data of a station area in Zhejiang is verified. The result shows that the RF-CPSO-LSSVM algorithm is more accurate and advanced in daily line loss rate forecasting in contrast to LSSVM, PSO-LSSVM and APSO-LSSVM algorithm.

关键词(KeyWords): 日线损率;置信区间;LSSVM算法
daily line loss rate;confidence interval;LSSVM algorithm

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JX170007)

作者(Author): 郁家麟,顾韬,沈浚,周金飞,汪东耀,徐晓丁
YU Jialin,GU Tao,SHEN Jun,ZHOU Jinfei,WANG Dongyao,XU Xiaoding

DOI: 10.19585/j.zjdl.202007011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享