浙江电力

2020, v.39;No.294(10) 105-110

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

发电侧燃料管理系统及燃煤优化预测研究
Research on Generation-side Fuel Management System and Coal Optimization Prediction

赵玉柱,卢伟辉,王寅,张中林
ZHAO Yuzhu,LU Weihui,WANG Ying,ZHANG Zhonglin

摘要(Abstract):

为了确保电网和调度机构掌握火电企业的燃料库存和供应情况,基于互联网+技术构建了发电侧火电机组燃料数据采集和管理系统。采用K-means聚类算法,建立了火电企业燃料大数据模型,对火电企业燃料品质和成本进行分析、评价。同时,改进了ARMA(自回归滑动平均)预测模型,利用已有的大数据对发电侧燃料库存进行精确预测,以提高电网电源的稳定性和可靠性。利用所建立的预测模型对南方电网发电侧燃料量进行预测,并将预测值与实际值进行对比,验证了所提方法的准确性。
To ensure that the CSG and the dispatching department can master the generation-side fuel stock and supply of power plants, the fuel data acquisition and management system was constructed based on the Internet plus technology. Using K-means clustering algorithm, a big data model of fuel condition of thermal power plants was established to analyze and evaluate the fuel quality and cost. At the same time, the ARMA(auto-regressive moving-average) prediction model was improved, and the existing big data was used to accurately predict the generation-side fuel inventory of CSG, and the predicted value was compared with the actual value, which verifies the accuracy of the proposed method.

关键词(KeyWords): 燃料;管理;优化;预测
fuel;management;optimization;prediction

Abstract:

Keywords:

基金项目(Foundation): 南京工程学院创新基金重大项目(CKJA201507);南京工程学院在职培养博士科研资助项目(ZKJ201616)

作者(Author): 赵玉柱,卢伟辉,王寅,张中林
ZHAO Yuzhu,LU Weihui,WANG Ying,ZHANG Zhonglin

DOI: 10.19585/j.zjdl.202010018

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享