基于边缘侧自编码器压缩的换流站设备故障预测Fault Prediction of Converter Station Equipment Based on Edge Side Autoencoder Compression
胡宪,张彩友,冯毅萍,顾天雄,潘戈,富银芳
HU Xian,ZHANG Caiyou,FENG Yiping,GU Tianxiong,PAN Ge,FU Yinfang
摘要(Abstract):
随着电力需求的日益增长,保证电力设备维持在高可用的状态变得非常重要。故障预警通过预测设备的潜在故障,协助运维人员提前定位系统不稳定因素并加以干预,成为设备主动运维的重要方法。结合换流站设备呈区域分布的特点,提出了一种基于边缘侧自编码器压缩的分布式LSTM(长短期记忆网络)预测模型。该模型将生产区域抽象为边缘节点,通过自编码器提取表征各边缘节点设备状态的编码信息,并利用工业网络进行信息共享。通过特征工程的方法改进了传统LSTM模型的输入,在提升模型预测精度的同时降低了模型复杂度。某换流站的应用案例验证了方法的有效性和可行性。
With the growing demand for electric power, it is of great consequence to maintain high availability of power equipment. Fault warning, by prediction of potential equipment faults, can help maintenance personnel in advance locate and intervene in unstable factors and now becomes an active maintenance method. In view of the regional distribution of converter stations, the paper proposes a distributed LSTM(long short-term memory) prediction model based on edge side autoencoder compression which abstracts the production area as an edge node, utilizes the autoencoder to extract the coded information that characterizes the equipment status of edge device and shares the information through industrial networks. By means of featuring engineering, the input of the traditional LTSM model is improved, the model prediction precision raised and model complexity reduced. The effectiveness and feasibility of the proposed method are verified by a case study of a converter station.
关键词(KeyWords):
边缘侧;分布式计算;故障预测;自编码器
edge side;distributed computing;fault prediction;autoencoder
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211MR18004N)
作者(Author):
胡宪,张彩友,冯毅萍,顾天雄,潘戈,富银芳
HU Xian,ZHANG Caiyou,FENG Yiping,GU Tianxiong,PAN Ge,FU Yinfang
DOI: 10.19585/j.zjdl.202105006
参考文献(References):
- [1]蔡骥然,郑永康,周振宇,等.智能变电站二次设备状态监测研究综述[J].电力系统保护与控制,2016,44(6):148-154.
- [2]范建斌,于永清,刘泽洪,等.±800 kV特高压直流输电标准体系的建立[J].电网技术,2006,30(14):1-6.
- [3]李刚,张博,赵文清,等.电力设备状态评估中的数据科学问题:挑战与展望[J].电力系统自动化,2018,42(21):10-20.
- [4]秦超,吕文元.考虑老化因子的单设备系统健康预测研究[J].技术与创新管理,2017,38(1):85-88.
- [5]王德文,宋亚奇,朱永利.基于云计算的智能电网信息平台[J].电力系统自动化,2010,34(22):7-12.
- [6]王佳梓,王桂玲.“云+端”大数据驱动的预见性电厂设备维护[J].华电技术,2019,41(11):40-45.
- [7]SHI W S,CAO J,ZHANG Q,et al.Edge computing:vision and challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646.
- [8]杨骏,许爱东,侯文静,等.计量系统下基于边缘计算的电量预测[J].智能电网,2019,9(1):23-30.
- [9]赵海涛,程慧玲,丁仪,等.基于深度学习的车联边缘网络交通事故风险预测算法研究[J].电子与信息学报,2020,42(1):50-57.
- [10]易利容,王绍宇,殷丽丽,等.基于多变量LSTM的工业传感器时序数据预测[J].智能计算机与应用,2018,8(5):13-16.
- [11]郜逸星,孙淑珍.小波去噪结合ARMA模型在电力设备故障率预测中的应用[J].内蒙古工业大学学报(自然科学版),2019,38(2):122-128.