浙江电力

2017, v.36;No.258(10) 83-86

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

深度学习在电力潜在投诉识别分类中的应用
Application of Deep Learning in Identification and Classification of Potential Complaints of Electric Power

罗欣,张爽
LUO Xin,ZHANG Shuang

摘要(Abstract):

随着用户对用电服务的要求及维权意识的不断提高,供电企业需开展海量客户诉求分析,从而实现供电业务薄弱点的发现和改进。因此,提出基于深度学习的电力疑似投诉工单识别分类技术应用,通过深度学习建模、投诉特征标签提炼、模型学习训练、疑似投诉识别,优化投诉风险预警与管理工作,缓解一线工作人员服务压力。
With the uses′ increased requirements on power consumption and improved awareness of right,power supply enterprises need to carry out massive customer demands analysis to discover and improve weak points in power supply services.Therefore,the paper puts forward application of potential complaints work sheet identification and classification based on deep learning.By deep learning modeling,complaint character tag abstracting,model learning and training,potential complaints identification and complaint risk warning and management optimization,service loads of frontline workers are greatly reduced.

关键词(KeyWords): 95598;投诉;文本分类;深度学习
95598;complaints;text classification;deep learning

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 罗欣,张爽
LUO Xin,ZHANG Shuang

DOI: 10.19585/j.zjdl.201710016

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享