电力设备缺陷文本质量保证与评级软件的开发及应用Development and application of quality assurance and rating software program for power equipment defect texts
李彦儒,王慧芳,陈昊,张佳丽,江帆,谢雅雯
LI Yanru,WANG Huifang,CHEN Hao,ZHANG Jiali,JIANG Fan,XIE Yawen
摘要(Abstract):
针对电力设备缺陷文本质量保证和评级工作缺少智能化工具的问题,开发基于标准和历史缺陷的电力设备缺陷文本质量保证与评级软件。首先,进行软件需求分析,确定软件要实现文本质量分析和缺陷自动评级的主要功能,针对标准和历史缺陷两类研究依据的特点设计了两种使用流程。然后,介绍了关键功能模块的详细程序设计过程,其中基于标准的文本质量分析和缺陷自动评级采用标准树匹配的方法,基于历史缺陷的文本质量分析和缺陷自动评级采用基于知识图谱进行图检索的方法。最后,用算例展示了软件的运行效果,结果表明,该软件通过交互方式实现了输入缺陷文本的质量智能管控和自动评级功能,为电力设备缺陷闭环管理和运检智能化水平的提升提供了有力支撑。
In view of the lack of intelligent tools for the quality assurance and rating of power equipment defect text,the paper proposes a quality assurance and rating software program for power equipment defect text based on standards and historical defects. Firstly,it analyzes the software requirements and determines that the software needs to analyze text quality and automatically rate the defects. Then,according to the characteristics of the two bases,two application processes are designed. Then,the detailed program design process of key functional modules is introduced. The standard-based text quality analysis and automatic defect rating adopt standard tree matching methods.The text quality analysis and automatic defect rating based on history defects adopt graph retrieval methods based on knowledge graph(KG). Finally,the operation effect of the software is demonstrated by examples. The results show that the software realizes the intelligent quality control and automatic rating of the input defect text by interactive means,which renders powerful support for the closed-loop management of power equipment defects and the improvement of the intelligence level of operation and inspection.
关键词(KeyWords):
电力设备缺陷文本;软件开发;缺陷分类标准;文本质量分析;缺陷自动评级
power equipment defect text;software development;defect classification standard;text quality analysis;automatic defect rating
基金项目(Foundation): 国网浙江省电力有限公司双创资助项目(B711JZ21000P)
作者(Author):
李彦儒,王慧芳,陈昊,张佳丽,江帆,谢雅雯
LI Yanru,WANG Huifang,CHEN Hao,ZHANG Jiali,JIANG Fan,XIE Yawen
DOI: 10.19585/j.zjdl.202207011
参考文献(References):
- [1]李晨曦,邵蒙悦,冯杰.基于深度学习的配电网线路设备缺陷智能检测[J].浙江电力,2021,40(3):97-103.
- [2]曹志勇,丰佳,毛文利,等.基于特征融合Faster R-CNN的电力塔基目标检测[J].浙江电力,2021,40(11):72-77.
- [3]邱剑,王慧芳,应高亮,等.文本信息挖掘技术及其在断路器全寿命状态评价中的应用[J].电力系统自动化,2016,40(6):107-112.
- [4]曹靖,陈陆燊,邱剑,等.基于语义框架的电网缺陷文本挖掘技术及其应用[J].电网技术,2017,41(2):637-643.
- [5]国家电网公司.输变电设备缺陷用语规范:Q/GDW—1904[S].北京:国家电网公司,2014.
- [6]吕梦平,段斌,蒋海辉,等.基于知识图谱技术的风电数据管理与应用研究[J].电力系统保护与控制,2021,49(6):167-173.
- [7]邵冠宇,王慧芳,何奔腾.电网设备缺陷文本的质量评价与提升方法[J].电网技术,2019,43(4):1472-1479.
- [8] WANG H F,LIU Z Q.An error recognition method for power equipment defect records based on knowledge graph technology[J].Frontiers of Information Technology&Electronic Engineering,2019,20(3):1564-1577.
- [9]刘梓权,王慧芳,曹靖,等.基于卷积神经网络的电力设备缺陷文本分类模型研究[J].电网技术,2018,42(2):644-651.
- [10]冯斌,张又文,唐昕,等.基于BiLSTM-Attention神经网络的电力设备缺陷文本挖掘[J].中国电机工程学报,2020,45(增刊1):1-10.
- [11]邵冠宇,王慧芳,吴向宏,等.基于依存句法分析的电力设备缺陷文本信息精确辨识方法[J].电力系统自动化,2020,44(12):178-185.
- [12]郑翔,王慧芳,严娴峥,等.用于APP的缺陷文本自动分类与质量保证方法[J].电力系统及其自动化学报,2020,32(7):131-136.
- [13]刘梓权,王慧芳.基于知识图谱技术的电力设备缺陷记录检索方法[J].电力系统自动化,2018,42(14):158-164.
- [14]施正钗,郑俊翔,周泰斌,等.基于语义分析的设备监控告警信息知识图谱构建研究[J].浙江电力,2020,39(8):83-87.
- [15]王慧芳,曹靖,罗麟.电力文本数据挖掘现状及挑战[J].浙江电力,2019,38(3):1-7.
- 电力设备缺陷文本
- 软件开发
- 缺陷分类标准
- 文本质量分析
- 缺陷自动评级
power equipment defect text - software development
- defect classification standard
- text quality analysis
- automatic defect rating