浙江电力

2025, v.44;No.353(09) 46-57

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于多智能体分层强化学习的多园区综合能源系统优化运行
Optimal operation of MPIESs based on hierarchical multi-agent reinforcement learning

李忠凡,陈曦,黄海涛
LI Zhongfan,CHEN Xi,HUANG Haitao

摘要(Abstract):

随着MPIES(多园区综合能源系统)的快速发展,各园区作为独立利益主体存在利益诉求差异,且在协作过程中面临无法获取全局信息、注重隐私保护与独立自治等问题。为解决这些挑战,提出一种基于能源共享商业模式和多智能体分层强化学习的MPIES优化运行模型。首先,基于商业画布模块化设计能源共享商业模式,并构建适应MPIES多主体特性的多智能体分层强化学习协作框架,其中上层协调智能体负责进行全局资源优化和能源共享协调,而下层执行智能体负责执行能源管理并进行能源共享决策。其次,建立MPIES多智能体协作优化模型,并应用ADMM(交替方向乘子法)分布式求解,实现去中心化的全局优化。仿真结果表明,该框架下MPIES运行经济效益和资源利用效率显著提升,降低了对外部能源市场的依赖,提高了可再生能源的消纳能力。
With the rapid development of multi-park integrated energy systems(MPIESs), individual parks, as independent stakeholders, exhibit differing interests and face challenges such as limited access to global information, a strong emphasis on privacy protection, and the need for autonomy in collaborative processes. To address these issues, this paper proposes an optimal operation model for MPIESs based on an energy-sharing business model and hierarchical multi-agent reinforcement learning. First, an energy-sharing business model is designed using a business model canvas, and a collaboration framework based on hierarchical multi-agent reinforcement learning is developed to accommodate the MPIES featuring multiple agents. In this framework, the upper-layer coordinating agents optimizes global resources and coordinates energy sharing, while the lower-layer executing agents manages energy operations and makes energy-sharing decisions. Second, a multi-agent collaborative optimization model for MPIESs is developed and solved using the alternating direction method of multipliers(ADMM) to achieve decentralized global optimization. Simulation results demonstrate that the proposed framework significantly enhances the operational economic benefits and resource utilization efficiency of MPIESs, reduces dependence on external energy markets, and enhances renewable energy integration.

关键词(KeyWords): 多园区综合能源系统;能源共享;协作优化;多智能体;分布式优化
MPIES;energy sharing;collaboration optimization;multi-agent;distributed optimization

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(U2066214)

作者(Author): 李忠凡,陈曦,黄海涛
LI Zhongfan,CHEN Xi,HUANG Haitao

DOI: 10.19585/j.zjdl.202509005

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享