浙江电力

2021, v.40;No.305(09) 105-110

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于图像处理的无人机电力巡线航向偏差检测
The Course Deviation Detection of Power Line Tracking UAV based on Image Processing

杨坚,徐硕,林中圣
YANG Jian,XU Shuo,LIN Zhongsheng

摘要(Abstract):

无人机航向偏差检测是无人机电力线智能巡检的关键技术之一。通过对图像中电力线的特征分析,提出一种电力线图像检测并获得航向偏差的方法。首先对原始图像进行预处理,减少背景对电力线检测的干扰;其次采用Sobel算法进行边缘检测,通过形态学处理滤除二值图中的背景噪声并增强电力线边缘;然后利用Hough变换实现电力线的快速提取;最后基于检测结果拟合出当前电力线方向,获得航向偏差。实验结果表明,该算法可以有效减少图像背景干扰,电力线检测速度达到12~24帧/s,实现直线型电力线检测并获得航向偏差,航向准确率达到98.67%,位置准确率达到97.45%,具有检测速度快、准确率高等优点。
The detection of course deviation is the key technology of intelligent inspection of UAV power line based on image processing technology. An image detecting and course deviation obtaining method is proposed by analyzing the characteristics of power line image. Firstly, the original image is preprocessed to reduce the interference of background to power line detection. Then, the Sobel algorithm is used for edge detection. The background noise in the binary image is filtered and the edge of the power line is enhanced through the morphological processing algorithm. Finally, the Hough transform is used to achieve fast extraction of power lines.The course deviation is obtained based on the fitted power lines. The experimental results indicate that the algorithm can effectively reduce the interference of image background. The power line detection speed can reach 12~24 frames per second. The power lines can be detected and the course deviation can be obtained.The course accuracy rate and position accuracy rate reach 98.67% and 97.45%, respectively. It has the advantages of fast detection speed and high accuracy.

关键词(KeyWords): 无人机;航向偏差;Hough变换;Sobel算子
UAV;course deviation;hough transform;sobel operator

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1800LL)

作者(Author): 杨坚,徐硕,林中圣
YANG Jian,XU Shuo,LIN Zhongsheng

DOI: 10.19585/j.zjdl.202109015

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享