三相共箱气体绝缘输电线路多物理场数值仿真分析Numerical simulation and analysis of multi-physics fields in three-phase enclosed GIL
谢声益,吴芳芳,朱珉,赵旭阳,盛叶弘,徐爱民
XIE Shengyi,WU Fangfang,ZHU Min,ZHAO Xuyang,SHENG Yehong,XU Aimin
摘要(Abstract):
GIL(气体绝缘输电线路)内部的电-磁-热-流多物理场分布状态能够为GIL的设计及运行状态监测提供重要理论支撑。因此,建立了220 kV三相共箱式GIL等效物理模型,考虑多物理场耦合效应及材料参数与温度的非线性关系,采用有限元数值算法对GIL内部瞬态电磁场及不同类型绝缘气体GIL内部的稳态温度场和流场进行分析研究。结果表明,GIL内部电磁场强度远强于架空输电线路;在绝缘气体流场的影响下,GIL箱内温度场整体呈现上高下低的分布特征,且与绝缘气体参数密切相关;在所讨论的3种绝缘气体中,填充SF_6绝缘气体时具有更优的传热导热能力,GIL箱内温升较低。
The multi-physics field distribution(including electric, magnetic, thermal, and flow fields) inside gasinsulated transmission lines(GIL) offers crucial theoretical support for the design and operational monitoring of GIL systems. Therefore, an equivalent physical model of a 220 kV three-phase enclosed GIL is established, considering the coupling effects of multi-physics fields and the nonlinear relationship between material parameters and temperature. Finite element numerical methods are employed to analyze the transient electromagnetic field, as well as steady-state temperature field and flow field inside GIL with different insulating gases. The results indicate that the electromagnetic field intensity inside GIL is much stronger than that of overhead transmission lines. Affected by the insulating gas flow field, the temperature field inside the GIL enclosure exhibits a distribution feature with higher temperatures at the top and lower at the bottom, which is closely related to the insulating gas parameters. Among the three insulating gases discussed, when SF6-filled GIL shows superior heat transfer and thermal conduction capabilities, resulting in a lower temperature rise inside the GIL enclosure.
关键词(KeyWords):
三相共箱气体绝缘输电线路;多物理场;电-磁-热-流耦合;有限元
three-phase enclosed GIL;multi-physics fields;electromagnetic-thermal-flow coupling;finite element method
基金项目(Foundation): 国家重点研发计划(2021YFF0603105)
作者(Author):
谢声益,吴芳芳,朱珉,赵旭阳,盛叶弘,徐爱民
XIE Shengyi,WU Fangfang,ZHU Min,ZHAO Xuyang,SHENG Yehong,XU Aimin
DOI: 10.19585/j.zjdl.202508011
参考文献(References):
- [1]朱金华,谢成,邵先军,等.C4F7N环保气体性能分析及其在环网柜中的应用展望[J].浙江电力,2022,41(1):1-9.ZHU Jinhua,XIE Cheng,SHAO Xianjun,et al.Analysis on the performance of C4F7N environmental gas and its application prospect in ring main units[J].Zhejiang Electric Power,2022,41(1):1-9.
- [2]肖淞,石生尧,林婧桐,等.“碳达峰、碳中和”目标下高压电气设备中强温室绝缘气体SF6控制策略分析[J].中国电机工程学报,2023,43(1):339-358.XIAO Song,SHI Shengyao,LIN Jingtong,et al.Analysis on the control strategy of the strong greenhouse insulating gas SF6 in high-voltage electrical equipment under the goal of“emission peak and carbon neutrality”[J].Proceedings of the CSEE,2023,43(1):339-358.
- [3]楚东月,齐汝宾,李新田,等.基于电化学传感器的SF6/N2混气中分解产物动态修正检测方法[J].电工技术,2022(5):175-177.CHU Dongyue,QI Rubin,LI Xintian,et al.Dynamic correction detection method of SF6/N2 mixture gas decomposition products based on electrochemical sensor[J]. Electric Engineering,2022(5):175-177.
- [4]周文俊,邱睿,郑宇,等.环保绝缘气体介电强度预测方法评估[J].电工技术学报,2023,38(增刊1):214-221.ZHOU Wenjun,QIU Rui,ZHENG Yu,et al.The evaluation of dielectric strength prediction methods for ecofriendly insulation gases[J].Transactions of China Electrotechnical Society,2023,38(S1):214-221
- [5]李冰,邓云坤,肖登明.基于Boltzmann方程的C3F8及C3F8-N2混合气体绝缘性能[J].高电压技术,2015,41(12):4150-4157.LI Bing,DENG Yunkun,XIAO Dengming. Insulation characteristics of C3F8 and C3F8-N2 gas mixture using Boltzmann equation method[J]. High Voltage Engineering,2015,41(12):4150-4157.
- [6]邓云坤,马仪,赵谡,等.基于电子输运参数的CF3I及CF3I-N2混合气体绝缘性能分析[J].电工技术学报,2018,33(7):1641-1651.DENG Yunkun,MA Yi,ZHAO Su,et al.Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society,2018,33(7):1641-1651.
- [7]张英,陈琪,张晓星,等.C3F7CN/CO2混合气体在准均匀电场中的绝缘性能[J].高电压技术,2018,44(10):3158-3164.ZHANG Ying,CHEN Qi,ZHANG Xiaoxing,et al.Insulation performance of C3F7CN/CO2 gas mixtures in quasiuniform electric field[J].High Voltage Engineering,2018,44(10):3158-3164.
- [8]周永言,孙东伟,唐念,等.新型环保绝缘气体1-C3F6与CO2混合气体的绝缘性能研究[J].高压电器,2021,57(3):19-26.ZHOU Yongyan,SUN Dongwei,TANG Nian,et al.Study on insulation performance of new environmentally friendly insulation gas 1-C3F6 and CO2 gas mixture[J].High Voltage Apparatus,2021,57(3):19-26.
- [9]孙鹏程,王帮田,洪文芳,等.SF6/N2混合气体绝缘特性的实验研究[J].中国电力,2012,45(12):71-75.SUN Pengcheng,WANG Bangtian,HONG Wenfang,et al. Experimental studies on electrical insulation performances of SF6/N2 gas mixtures[J].Electric Power,2012,45(12):71-75.
- [10]张潮海,邹可园,张晓星.高压电气设备绝缘气体分解产物光学检测技术研究综述[J].高电压技术,2023,49(7):2806-2815.ZHANG Chaohai,ZOU Keyuan,ZHANG Xiaoxing. Review on optical detection technology of insulating gas decomposition products for high voltage electrical equipment[J].High Voltage Engineering,2023,49(7):2806-2815.
- [11]颜湘莲,王承玉,季严松,等.气体绝缘设备中SF6气体分解产物与设备故障关系的建模[J].电工技术学报,2015,30(22):231-238.YAN Xianglian,WANG Chengyu,JI Yansong,et al.Modeling of the relation between SF6 decomposition products and interior faults in gas insulated equipment[J].Transactions of China Electrotechnical Society,2015,30(22):231-238
- [12]何琳.气相色谱法应用于SF6混合绝缘气体分解产物的检测研究分析[J].电力设备管理,2023(22):150-152.HE Lin.Research and analysis of gas chromatography applied to the detection of decomposition products of SF6mixed insulating gases[J].Electric Power Equipment Management,2023(22):150-152.
- [13]唐睿,李昊阳,付钰伟,等.C4F7N/N2混合气体放电分解体系研究[J].高压电器,2021,57(3):139-144.TANG Rui,LI Haoyang,FU Yuwei,et al.Study on discharge decomposition system of C4F7N/N2 gas mixture[J].High Voltage Apparatus,2021,57(3):139-144.
- [14]靳一林,舒乃秋,邹怡,等.气体绝缘输电线路温升特性有限元分析[J].电工电能新技术,2015,34(3):29-34.JIN Yilin,SHU Naiqiu,ZOU Yi,et al. Finite-elementanalysis for characteristic of temperature rise in gasinsulated transmission lines[J]. Advanced Technology of Electrical Engineering and Energy,2015,34(3):29-34.
- [15]杨龙,吕毅,袁飞晨,等.基于有限元法的GIL温升仿真与试验[J].机电工程技术,2023,52(9):206-210.YANG Long,LüYi,YUAN Feichen,et al. Simulation and experiment of temperature rise based on finite element method[J].Mechanical&Electrical Engineering Technology,2023,52(9):206-210.
- [16]宋超然.高压交流GIL多物理场耦合分析及在线监测系统设计[D].徐州:中国矿业大学,2019.SONG Chaoran.Multi-physical field coupling analysis and online monitoring system design of high voltage AC GIL[D]. Xuzhou:China University of Mining and Technology,2019.
- [17]黄鸿飞,李洪涛,高佳平,等.多场耦合作用下GIS/GIL气固界面绝缘性能研究评述[J].高压电器,2023,59(9):12-26.HUANG Hongfei,LI Hongtao,GAO Jiaping,et al. Review on insulation performance at gas-solid interface in GIS/GIL with multi-field coupling[J].High Voltage Apparatus,2023,59(9):12-26.
- [18]陈敬友,高兵,杨帆,等.气体绝缘输电线路温升数值计算及绝缘气体换热能力[J].高电压技术,2020,46(11):4042-4051.CHEN Jingyou,GAO Bing,YANG Fan,et al.Numerical calculation of temperature rise of gas insulated transmission lines and heat transfer capability of insulating gases[J].High Voltage Engineering,2020,46(11):4042-4051.
- [19]江苏安靠智电股份有限公司.220 kV GIL输电系统主要参数[EB/OL].[2024-12-11]. http://www. ankura. com.cn/products_14/202.html.
- [20]李丽娜.三相共箱GIL的短路电动力计算及工程应用[J].现代工业经济和信息化,2022,12(8):164-168.LI Lina.Short circuit electrodynamic calculation and engineering application of three phase enclosure type GIL[J].Modern Industrial Economy and Informationization,2022,12(8):164-168.
- [21]高鹏.环保型GIL温度场分析及导体温度反演研究[D].徐州:中国矿业大学,2022.GAO Peng.Study on Temperature field analysis and conductor temperature inversion of environment-friendly GIL[D]. Xuzhou:China University of Mining and Technology,2022.
- [22]周洋.220 kV架空输电线路电磁辐射的相关计算和减缓措施[J].电工技术,2017(12):48-49.ZHOU Yang. Correlation calculation and mitigation measures of electromagnetic radiation of 220 kV overhead transmission lines[J]. Electric Engineering,2017(12):48-49.
- 三相共箱气体绝缘输电线路
- 多物理场
- 电-磁-热-流耦合
- 有限元
three-phase enclosed GIL - multi-physics fields
- electromagnetic-thermal-flow coupling
- finite element method