基于聚类再回归方法的光伏发电量短期预测Short-term Forecasting of PV Power Generation Based on Clustering and Later Regression
陆爽,徐伟明,刘维亮,马青
LU Shuang,XU Weiming,LIU Weiliang,MA Qing
摘要(Abstract):
为进行光伏发电量的短期预测,提出基于天气预报的聚类再回归预测方法。首先引入Pearson相关系数分析光伏发电量与辐照强度、气温的相关性,确定辐照强度为回归模型输入以预测逐日光伏发电量。然后利用K-means聚类算法对历史气象数据进行分析并细分天气类型,提出输入为气温温差的逐时辐照强度预测模型。最后通过算例分析验证,该方法依据天气类型、气温变化量可得到逐日发电量预测值,输入量少,方法简单,预测精度较高。
This paper proposes a clustering and later regression method based on the weather forecast to shortterm forecasting of PV power generation. Firstly, the Pearson correlation coefficient is applied to analyze the correlations between PV power generation, irradiation intensity and temperature to take the irradiation intensity as the regression model input to forecast daily PV power generation; secondly, historic meteorological data are analyzed by K-means clustering algorithm, and the weather types are subdivided to propose an hourly irradiation intensity forecasting model with temperature differences as its input parameters. Finally, it is demonstrated by an example that the proposed method, characterized by small input quantity, simple procedure and high forecasting accuracy, can conclude forecasting value of daily generation according to weather types and temperature change.
关键词(KeyWords):
光伏发电;辐照强度;短期预测;回归;聚类
photovoltaic power generation;irradiation intensity;short-term forecasting;regression;clustering
基金项目(Foundation):
作者(Author):
陆爽,徐伟明,刘维亮,马青
LU Shuang,XU Weiming,LIU Weiliang,MA Qing
DOI: 10.19585/j.zjdl.202007009
参考文献(References):
- [1]李光明,廖华,李景天,等.并网光伏发电系统发电量预测方法的探讨[J].云南师范大学学报,2011,31(2):33-38.
- [2]杨德全,王艳,焦彦军.基于小波神经网络的光伏系统发电量预测[J].可再生能源,2013,31(7):1-5.
- [3]李光明,何京鸿,赵恒利,等.基于多元线性回归模型的并网光伏发电系统发电量预测研究[J].现代电力,2011,28(2):43-48.
- [4]李英姿,贺琳,牛进苍.基于马尔可夫链的光伏并网发电量预测[J].太阳能学报,2014,35(4):611-616.
- [5]朱永强,田军.最小二乘支持向量机在光伏功率预测中的应用[J].电网技术,2011,35(7):54-59.
- [6]姜恩宇,季亮,夏能弘,等.基于支持向量机的光伏发电功率预测[J].上海电力学院学报,2015,31(6):512-524.
- [7]王守相,张娜.基于灰色神经网络组合模型的光伏短期出力预测[J].电力系统自动化,2012,36(19):37-41.
- [8]李元诚,白恺,曲洪达,等.基于粒子群-稀疏贝叶斯混合算法的光伏功率预测方法[J].太阳能学报,2016,37(5):1153-1158.
- [9]王昕,黄柯,郑益慧,等.基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J].电网技术,2017,41(2):455-461.
- [10]叶林,陈政,赵永宁,等.基于遗传算法-模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):16-22.
- [11]倪春花,李弘毅,吴在军.雾霾对光伏发电量的影响分析[J].江苏电机工程,2015,34(6):77-81.
- [12]杉山将著,许永伟,译.图解机器学习[M].北京:人民邮电出版社,2015.
- [13]叶琳,杨滢,洪道鉴,等.深度学习在电力系统中的应用研究综述[J].浙江电力,2019,38(5):83-89.
- [14]张介,马赟,张旭鹏,等.基于聚类分析方法的风电场日前功率预测研究[J].浙江电力,2018,37(1):42-46.
- [15]金鑫,袁越,傅质馨,等.天气类型聚类的支持向量机在光伏系统输出功率预测中的应用[J].现代电力,2013,30(4):13-18.
- [16]尚凯锋.室外气温与太阳辐射的随动性关系研究[D].西安:西安建筑科技大学,2016.
- [17]沈金荣,惠杰,倪莹,等.环境因素对光伏发电量综合回归分析[J].可再生能源,2016,34(7):997-1002.
- [18]TANG P Z,CHEN D,HOU Y S.Entropy method com bined with extreme learning machine method for the shortterm photovoltaic power generation forecasting[J].Chaos,Solitons&Fractals,2016,89:243-248.
- [19]HUANG C M,CHEN S J,YANG S P,et al.One-day-ahead hourly forecasting for photovoltaic power generation using an intelligent method with weather-based forecast ing models[J].IET Generation Transmission&Distribution,2015,9(14):1874-1882.
- [20]李建林,籍天明,孔令达,等.光伏发电数据挖掘中的跨度选取[J].电工技术学报,2015,30(14):450-456.
- [21]时珉,周海,韩雨彤,等.一种考虑季节特性的光伏电站多模型功率预测方法[J].电网与清洁能源,2019,35(7):75-82.
- [22]李勤超,周立中,赵艳龙,等.基于分布式光伏典型日曲线的统调负荷预测方法[J].浙江电力,2019,38(6):113-117.
- [23]张俊,贺旭,陆春良,等.基于数值天气预报的光伏功率短期预测分类组合算法[J].广东电力,2019,32(6):55-60.
- [24]祝暄懿,姚李孝.基于相似日和小波神经网络的光伏短期功率预测[J].电网与清洁能源,2019,35(3):75-78.
- [25]李伟,王冰,陈献慧,等.基于气象因子权重相似日的短期光伏功率预测[J].广东电力,2018,31(4):59-64.