浙江电力

2023, v.42;No.327(07) 94-101

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于模型预测控制算法的脱硫控制系统优化
Optimization of desulphurization control system based on model predictive control algorithm

陈长和,陈朝晔,姜志伟,冯晓露,蒋鹏飞
CHEN Changhe,CHEN Zhaoye,JIANG Zhiwei,FENG Xiaolu,JIANG Pengfei

摘要(Abstract):

为了提升火电厂湿法脱硫系统的自动化控制水平,针对浙江温州电厂6号机组脱硫装置原自动控制系统控制效果差、自动投入率低、无法对净烟气SO_2浓度进行控制等问题,设计了一种基于多变量模型预测控制算法的控制方案,将净烟气SO_2浓度和吸收塔浆液pH值同时列为被控变量,并建立了以锅炉负荷为调度变量的脱硫系统线性变参数模型。在Simulink中对改进后的脱硫控制方案进行了仿真试验,并将该控制方案应用在6号机组的脱硫控制优化改造中。实际投运效果表明,该脱硫控制系统可以将吸收塔浆液pH值平稳地控制在安全区间内,同时将净烟气SO_2浓度时均值与设定值的偏差控制在±2 mg/m~3(标准状况下)内,保证了脱硫装置的安全高效运行。
In order to improve the automatic control level of wet desulphurization system in thermal power plant, aiming at the problems of poor control effect, low automation degree, and inability to control the SO_2 concentration of the original automatic control system of No.6 desulphurization unit in Zhejiang Wenzhou Power Plant, an advanced control scheme based on multivariable model predictive control algorithm is designed. The concentration of SO_2 and pH value of absorber slurry are both listed as controlled variables, and a linear variable parameter model of desulphurization system with boiler load as scheduling variable is established. The desulphurization control scheme is preliminarily verified in Simulink simulation, and then applied in the desulphurization control optimization of No.6 unit. The actual operation effects show that the pH value can also be stably controlled within the allowable range by this advanced desulphurization control system, and the deviation between the hourly mean value of SO_2 concentration and the set value is within ±2 mg/m~3, which ensures the safe and efficient operation of the desulphurization equipment.

关键词(KeyWords): 烟气湿法脱硫系统自动控制;模型预测控制;线性变参数模型;净烟气SO_2浓度控制;吸收塔浆液pH值控制
automatic control of flue gas wet desulphurization system;model predictive control;linear variable parameter model;SO_2 concentration control;pH value control of absorber slurry

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 陈长和,陈朝晔,姜志伟,冯晓露,蒋鹏飞
CHEN Changhe,CHEN Zhaoye,JIANG Zhiwei,FENG Xiaolu,JIANG Pengfei

DOI: 10.19585/j.zjdl.202307011

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享