基于模型预测控制算法的脱硫控制系统优化Optimization of desulphurization control system based on model predictive control algorithm
陈长和,陈朝晔,姜志伟,冯晓露,蒋鹏飞
CHEN Changhe,CHEN Zhaoye,JIANG Zhiwei,FENG Xiaolu,JIANG Pengfei
摘要(Abstract):
为了提升火电厂湿法脱硫系统的自动化控制水平,针对浙江温州电厂6号机组脱硫装置原自动控制系统控制效果差、自动投入率低、无法对净烟气SO_2浓度进行控制等问题,设计了一种基于多变量模型预测控制算法的控制方案,将净烟气SO_2浓度和吸收塔浆液pH值同时列为被控变量,并建立了以锅炉负荷为调度变量的脱硫系统线性变参数模型。在Simulink中对改进后的脱硫控制方案进行了仿真试验,并将该控制方案应用在6号机组的脱硫控制优化改造中。实际投运效果表明,该脱硫控制系统可以将吸收塔浆液pH值平稳地控制在安全区间内,同时将净烟气SO_2浓度时均值与设定值的偏差控制在±2 mg/m~3(标准状况下)内,保证了脱硫装置的安全高效运行。
In order to improve the automatic control level of wet desulphurization system in thermal power plant, aiming at the problems of poor control effect, low automation degree, and inability to control the SO_2 concentration of the original automatic control system of No.6 desulphurization unit in Zhejiang Wenzhou Power Plant, an advanced control scheme based on multivariable model predictive control algorithm is designed. The concentration of SO_2 and pH value of absorber slurry are both listed as controlled variables, and a linear variable parameter model of desulphurization system with boiler load as scheduling variable is established. The desulphurization control scheme is preliminarily verified in Simulink simulation, and then applied in the desulphurization control optimization of No.6 unit. The actual operation effects show that the pH value can also be stably controlled within the allowable range by this advanced desulphurization control system, and the deviation between the hourly mean value of SO_2 concentration and the set value is within ±2 mg/m~3, which ensures the safe and efficient operation of the desulphurization equipment.
关键词(KeyWords):
烟气湿法脱硫系统自动控制;模型预测控制;线性变参数模型;净烟气SO_2浓度控制;吸收塔浆液pH值控制
automatic control of flue gas wet desulphurization system;model predictive control;linear variable parameter model;SO_2 concentration control;pH value control of absorber slurry
基金项目(Foundation):
作者(Author):
陈长和,陈朝晔,姜志伟,冯晓露,蒋鹏飞
CHEN Changhe,CHEN Zhaoye,JIANG Zhiwei,FENG Xiaolu,JIANG Pengfei
DOI: 10.19585/j.zjdl.202307011
参考文献(References):
- [1]王乐.1 000 MW超超临界机组脱硫增效项目改造研究[D].徐州:中国矿业大学,2021.WANG Le.Study on transformation of desulfurization and efficiency enhancement project for 1 000 MW ultrasupercritical unit[D].Xuzhou:China University of Mining and Technology,2021.
- [2]李栋,郝桂明,宋庆军,等.基于模糊控制的火电厂湿法烟气脱硫系统[J].测控技术,2013,32(1):72-75.LI Dong,HAO Guiming,SONG Qingjun,et al.Wet flue gas desulfurization system in power plant based on fuzzy control[J].Measurement&Control Technology,2013,32(1):72-75.
- [3]黄磊,官正强,唐德东,等.串级变比值模糊PID烟气脱硫浆液pH值控制优化及仿真[J].仪器仪表用户,2019,26(1):19-21.HUANG Lei,GUAN Zhengqiang,TANG Dedong,et al.The cascade-variable ratio-fuzzy PID control optimization and simulation of flue gas desulfurizing slurry p H value[J].Instrumentation,2019,26(1):19-21.
- [4]付文秀.大型脱硫系统的建模与优化控制方法的研究与应用[D].北京:华北电力大学,2015.FU Wenxiu.Research and application of modeling and optimal control method for large desulfurization system[D].Beijing:North China Electric Power University,2015.
- [5]王建峰,郄英杰,柳建民,等.基于供浆品质的电站湿法脱硫控制策略优化[J].节能,2021,40(10):46-49.WANG Jianfeng,QIE Yingjie,LIU Jianmin,et al.Control strategy optimization of power station wet desulfurization based on slurry quality[J].Energy Conservation,2021,40(10):46-49.
- [6]王伟,郑茗友,赵文杰,等.燃煤机组烟气脱硫系统供浆控制策略研究与应用[J].华北电力大学学报(自然科学版),2021,48(6):113-118.WANG Wei,ZHENG Mingyou,ZHAO Wenjie,et al.Research and application of slurry supply control strategy for WFGD system of coal-fired power plants[J].Journal of North China Electric Power University (Natural Science Edition),2021,48(6):113-118.
- [7]彭国富,曹顺安,杜家芝,等.湿法烟气脱硫石灰石供浆泵控制优化研究[J].工业仪表与自动化装置,2019(3):8-12.PENG Guofu,CAO Shunan,DU Jiazhi,et al.Research on control optimization of limestone slurry pump for wet flue gas desulfurization[J].Industrial Instrumentation&Automation,2019(3):8-12.
- [8]陈虹.模型预测控制[M].北京:科学出版社,2013.