浙江电力

2023, v.42;No.329(09) 9-16

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于Lasso-XGBoost-Stacking的省域电能替代潜力预测方法
A prediction method for provincial power substitution potential based on Lasso-XGBoost-Stacking

陆春光,葛梦亮,宋磊,吴继亮,潘国兵
LU Chunguang,GE Mengliang,SONG Lei,WU Jiliang,PAN Guobing

摘要(Abstract):

为了更好地掌握省域电能替代的量化潜力,提出了一种基于Lasso-XGBoost-Stacking的预测模型。通过交叉特征量化经济发展、环保、能源价格、政策扶持与技术进步共五种影响因素以降低各影响因素之间的多重共线性,并利用Lasso回归模型评价各量化影响因素的权重。以浙江省为例进行电能替代潜力预测分析,预测MAPE(平均绝对百分比误差)为12.22%,其准确性能够满足省域电能替代量化潜力分析的要求。对浙江省多情景电能替代场景分析发现,经济发展因素对电能替代潜力的影响最大,相较于工业、农业等领域,交通业有着最大的电能替代潜力。
In order to better grasp the quantitative potential of provincial power substitution, a prediction model based on Lasso-XGBoost-Stacking is proposed. Five influencing factors, including economic development, environmental protection, energy price, policy support and technological progress, are quantified by cross-features to reduce the multicollinearity among the influencing factors. Besides, the weights of the quantified influencing factors are evaluated by using Lasso regression model. The predicted MAPE(mean absolute percentage error) of Zhejiang province is up to 12.22%, which can meet the requirements of quantitative potential analysis of power substitution in the province. The analysis of the multi-scenario power substitution scenarios in Zhejiang reveals that economic development has the greatest impact on power substitution potential, and the transportation industry has the greatest power substitution potential relative to industry, agriculture and other sectors.

关键词(KeyWords): 电能替代;Lasso回归;XGBoost;Stacking;量化影响因素
power substitution;Lasso regression;XGBoost;Stacking;quantified influencing factors

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311YF220001)

作者(Author): 陆春光,葛梦亮,宋磊,吴继亮,潘国兵
LU Chunguang,GE Mengliang,SONG Lei,WU Jiliang,PAN Guobing

DOI: 10.19585/j.zjdl.202309002

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享