低频输电技术原理之一——M3C的数学模型与等效电路Principles of Low Frequency Power Transmission Technology: Part 1-Mathematical Model and Equivalent Circuit of M3C
徐政,张哲任
XU Zheng,ZHANG Zheren
摘要(Abstract):
低频海底电缆输电技术在远海风电送出和海上风电场构网方面具有竞争优势,而M~3C(模块化多电平矩阵变换器)是低频输电技术的核心元件。针对M~3C的数学模型与等效电路展开研究,介绍了低频输电技术的发展背景。通过将M~3C看作为已广泛应用的MMC(模块化多电平换流器)的结构扩展,给出了类似于MMC的M~3C拓扑结构和变量命名规则。在此基础上推导出了M~3C在abc三相坐标系中的数学模型,并在αβ0坐标系中建立了M~3C的数学模型,根据M~3C在αβ0坐标系中的数学方程,推导出了对应的等效电路。
Low-frequency submarine cable power transmission technology has competitive advantage in offshore wind power transmission and offshore wind farm network construction, and the modular multilevel matrix converter(M~3C) is the core component of low-frequency power transmission technology. This paper focuses on the mathematical model and equivalent circuit of the M~3C. First, the development context of low-frequency power transmission technology is described. By considering the M~3C as an extension of the widely used modular multilevel converter(MMC), the paper introduces M~3C topology and variable naming rules which are similar to the MMC. On this basis, the mathematical model of the M~3C in the abc coordinate system is derived, and the mathematical model of M~3C is established in the αβ0 coordinate system. According to the mathematical equation of the M~3C in the αβ0 coordinate system, the corresponding equivalent circuit is derived.
关键词(KeyWords):
低频输电;M~3C;abc坐标系;αβ0坐标系;数学模型;等效电路
low-frequency transmission;M~3C;abc coordinate system;αβ0 coordinate system;mathematical model;equivalent circuit
基金项目(Foundation):
作者(Author):
徐政,张哲任
XU Zheng,ZHANG Zheren
DOI: 10.19585/j.zjdl.202110002
参考文献(References):
- [1]蔡蓉,张立波,程濛,等.66 kV海上风电交流集电方案技术经济性研究[J].全球能源互联网,2019,2(2):155-162.
- [2]ADAMSON C,HINGORANI N G.High voltage direct current power transmission[M].London:Garraway Limited,1960.
- [3]RUSK A,RATHSMAN B G,GLIMSTEDT U.The HVDC power transmission from Swedish mainland to the Swedish island of Gotland[C].CIGRE Report No. 406,1950.
- [4]WANG X F.The fractional frequency transmission system[C].IEE Japan Power&Energy,Tokyo,Japan,IEE,1994:53-58.
- [5]王锡凡.分频输电系统[J].中国电力,1995,28(1):2-6.
- [6]ERICKSON R W,AL-NASEEM O A.A new family of matrix converters[C].27th Annual Conference of the IEEE Industrial Electronics Society,November 29-December2,2001,Denver,USA:1515-1520.
- [7]ANGKITITRAKUL S,ERICKSON R W.Capacitor voltage balancing control for a modular matrix converter[C].Twenty-First Annual IEEE Conference and Exposition on Ap plied Power Electronics.Dallas,TX:IEEE,2006:1659-1665.
- [8]MARQUARDT R.Stromrichterschaltungen mit verteilten energiespeichern[P]:German Patent.DE10103031A1.2001-01-24.
- [9]KAMMERER F,KOLB J,BRAUN M.A novel cascaded vector control scheme for the Modular Multilevel Matrix Converter[C].37th Annual Conference on IEEE Industrial Electronics Society.Melbourne:IEEE,2011:1097-1102.
- [10]KAMMERER F,KOLB J,BRAUN M.Fully decoupled current control and energy balancing of the modular multilevel matrix converter[C].15th international conference on Power Electronics and Motion Control.Novi Sad,Serbia:IEEE,2012:LS2a.3-1-LS2a.3-8.
- [11]KAWAMURA W,AKAGI H.Control of the modular multilevel cascade converter based on triple-star bridge-cells(MMCC-TSBC)for motor drives[C].IEEE Energy Conversion Congress and Exposition.Raleigh,USA:IEEE,2012:3506-3513.
- [12]KAWAMURA W,HAGIWARA M,AKAGI H.Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells(MMCC-TSBC)[J].IEEE Transactions on Industry Applications,2014,50(5):3536-3548.
- [13]孟永庆,王健,李磊,等.基于双dq坐标变换的M3C变换器的数学模型及控制策略研究[J].中国电机工程学报,2016,36(17):4702-4712.
- [14]徐政,肖晃庆,张哲任.柔性直流输电系统[M].2版.北京:机械工业出版社,2017.
- [15]CLARKE E.Circuit Analysis of A-C Power Systems,Vol.I—Symmetrical and Related Components,Wiley,1943.
- [16]AKAGI H,WATANABE E H,AREDES M.瞬时功率理论及其在电力调节中的应用[M].徐政译.北京:机械工业出版社,2009:35-39.