基于正交分解的电力系统状态估计可观性分析Observability Analysis of Power System State Estimation Based on Orthogonal Decomposition
赵友国,刘尚伟,王冠中,徐海柱,李富伟,逄春
ZHAO Youguo,LIU Shangwei,WANG Guanzhong,XU Haizhu,LI Fuwei,PANG Chun
摘要(Abstract):
状态估计的作用是对SCADA(数据采集与监控)系统的原始数据进行滤波,为EMS(能量管理系统)的优化与控制提供准确的电网实时信息。然而,当量测数据不充分时,可能导致系统状态不完全可观。为此,提出了一种基于正交变换的状态估计可观性分析方法。该方法属于数值分析中的直接法,基于向量组的正交分解从原始雅可比矩阵的行空间中构造一组正交基,并利用启发式方法使得构造正交基所用的行向量最少。方法的计算步骤简单,仅利用到线性代数理论,因此便于实际工程应用且易于被工程人员掌握。最后,通过算例验证所提方法的有效性。
State estimation is employed to filter the raw data of supervisory control and data acquisition(SCADA) and to provide accurate real-time information of the power grid for the optimization and control of the EMS(energy management system). In the case of data inadequacy, however, the system state may not be fully observable. Therefore, the paper proposes an observability analysis method for state estimation based on orthogonal transformation. The method belongs to the direct method in numerical analysis. It uses the orthogonal decomposition of the vector group to construct a set of orthogonal basis from the row space of the original Jacobian matrix and uses the heuristic method to minimize the row vectors used to construct the orthogonal basis. Simple in calculation steps in which linear algebra theory is used only, the method is convenient for engineering application and can be mastered by engineering personnel. Finally, an example is used to verify the effectiveness of the proposed method.
关键词(KeyWords):
状态估计;可观性;正交变换;启发式方法
state estimation;observability;orthogonal transformation;heuristic method
基金项目(Foundation): 中国博士后科学基金资助项目(2020M671718)
作者(Author):
赵友国,刘尚伟,王冠中,徐海柱,李富伟,逄春
ZHAO Youguo,LIU Shangwei,WANG Guanzhong,XU Haizhu,LI Fuwei,PANG Chun
DOI: 10.19585/j.zjdl.202107001
参考文献(References):
- [1]康重庆,姚良忠.高比例可再生能源电力系统的关键科学问题与理论研究框架[J].电力系统自动化,2017,41(9):2-11.
- [2]FETZER E E,ANDERSON P M.Observability in the State Estimation of Power Systems[J].IEEE Transactions on Power Apparatus and Systems,1975,94(6):1981-1988.
- [3]QUINTANA V H,SIMOES-COSTA A,MANDEL A. Power system topological observability using a direct graphtheoretic approach[J].IEEE Transactions on Power Apparatus and Systems,1982,Pas-101(3):617-626.
- [4]SLUTSKER I W,SCUDDER J M.Network observability analysis through measurement jacobian matrix reduction[J].IEEE Transactions on Power Systems,1987,2(2):331-336.
- [5]GOU B,ABUR A.A direct numerical method for observability analysis[J].IEEE Transactions on Power Systems,2000,15(2):625-630.
- [6]GOU B.Jacobian matrix-based observability analysis for state estimation[J].IEEE Transactions on Power Systems,2006,21(1):348-356.
- [7]ALMEIDA M C D,ASADA E N,GARCIA A V.On the use of gram matrix in observability analysis[J].IEEE Transactions on Power Systems,2008,23(1):249-251.
- [8]KORRES G N.A gram matrix-based method for observability restoration[J].IEEE Transactions on Power Systems,2011,26(4):2569-2571.
- [9]MONTICELLI A,WU F F.Network observability:identifi cation of observable islands and measurement placement[J].IEEE Transactions on Power Apparatus Systems,1985,Pas-104(5):1035-1041.
- [10]WU F F,MONTICELLI A.Network observability:theory[J].IEEE Transactions on Power Apparatus And Systems,1985,Pas-104(5):1042-1048.
- [11]HERRERO H,SOLARES C.A greedy algorithm for observability analysis[J].IEEE Transactions on Power Systems,2020,35(2):1638-1641.
- [12]李幸芝,韩蓓,李国杰,等.考虑非高斯耦合不确定性的交直流配电网两阶段概率状态估计[J].电工技术学报,2020,35(23):4949-4960.
- [13]董雷,王春斐,李烨,等.多时间断面电-气综合能源系统状态估计[J].电网技术,2020,44(9):3458-3465.
- [14]孟雨田,严正,徐潇源,等.配电网状态估计的全局灵敏度分析及应用[J].电力系统自动化,2020,44(2):114-122.
- [15]CASTILLO E,COBO A,JUBETE F,et al.Orthogonal sets and polar methods in linear algebra:applications to matrix calculations,systems of equations,inequalities,and linear programming[M].NJ,USA:John Wiley&Sons,2011.
- [16]ABUR A,GOMEZ-EXPOSITO A.Power system state estimation:theory and Implementation[M].USA:CRC Press,2004.