面向虚拟电厂的需求响应潜力评估方法研究Research on a demand response potential evaluation method for virtual power plant
张波,胡卫军,王健,丁珊珊,尚姗姗,马振宇,申一凡
ZHANG Bo,HU Weijun,WANG Jian,DIN Shanshan,SHANG Shanshan,MA Zhenyu,SHEN Yifan
摘要(Abstract):
新型电力系统建设背景下,关注虚拟电厂参与电网调控运行的需求响应管理策略具有重要意义,但目前多数研究集中于单一负荷资源的需求响应潜力分析,未将区域中所有用户考虑进来。对此,提出了适用于所有用户的负荷时间、价格弹性的评估方法,发现负荷率、时间弹性系数、价格交叉弹性系数在评估中发挥较大作用,而价格自弹性系数则影响不大;采用负荷弹性系数辨识用户在电力价格或激励作用下用电负荷时间上的灵活性与可控性,并以浙江金华典型电力用户为例展开测算,验证了此需求响应潜力评估方法具有一定的实用价值。
In the context of constructing a new-type power system, the demand response management strategy focusing on virtual power plants participating in power grid scheduling and operation is of great significance. However, most studies now focus on the demand response potential analysis of single load resources and do not take account of all users in the region. Therefore, this paper proposes an evaluation method of load time and price elasticity applicable to all users. It is found that load rate, time elasticity coefficient, and price cross-elasticity coefficient play a greater role than the price self-elasticity coefficient in the assessment. The load elasticity coefficient is used to identify the flexibility and controllability of customers' electricity load time under the effect of electricity price or incentive. Moreover, typical electricity customers in Jinhua are used for calculation, and the practical value of the demand response potential assessment method is verified.
关键词(KeyWords):
虚拟电厂;负荷弹性系数;需求响应潜力评估
virtual power plant;load elasticity coefficient;demand response potential assessment
基金项目(Foundation): 国家自然科学基金资助项目(72171082);; 国网浙江省电力有限公司信息化项目(2021038)
作者(Author):
张波,胡卫军,王健,丁珊珊,尚姗姗,马振宇,申一凡
ZHANG Bo,HU Weijun,WANG Jian,DIN Shanshan,SHANG Shanshan,MA Zhenyu,SHEN Yifan
参考文献(References):
- [1]陈雪敏,周丽霞,丁恒春,等.基于可调节负荷参与电网需求响应的潜力挖掘研究[J].电子设计工程,2022,30(15):143-146.CHEN Xuemin,ZHOU Lixia,DING Hengchun,et al.Research on potential mining of power grid demand response based on adjustable load participation[J]. Electronic Design Engineering,2022,30(15):143-146.
- [2]张长久,贾清泉,赵铁军,等.考虑需求响应的增量配电网分布式电源优化配置[J].电力系统及其自动化学报,2020,32(8):7-16.ZHANG Changjiu,JIA Qingquan,ZHAO Tiejun,et al.Optimal configuration of distributed generations in incremental distribution network considering demand-side response[J].Proceedings of the CSU-EPSA,2020,32(8):7-16.
- [3]崔杨,张汇泉,仲悟之,等.考虑需求响应的含光热电站可再生能源高渗透率电力系统多源优化调度[J].高电压技术,2020,46(5):1486-1496.CUI Yang,ZHANG Huiquan,ZHONG Wuzhi,et al.Multi-source optimal scheduling of renewable energy highpermeability power system with CSP plants considering demand response[J].High Voltage Engineering,2020,46(5):1486-1496.
- [4]吴迪,王韵楚,郁春雷,等.基于高斯过程回归的工业用户需求响应潜力评估方法[J].电力自动化设备,2022,42(7):94-101.WU Di,WANG Yunchu,YU Chunlei,et al.Demand response potential evaluation method of industrial users based on Gaussian process regression[J]. Electric Power Automation Equipment,2022,42(7):94-101.
- [5]杨景旭,李钦豪,张勇军,等.考虑电网需求匹配度的多EV聚合商需求响应削峰优化建模[J].电力自动化设备,2021,41(8):125-134.YANG Jingxu,LI Qinhao,ZHANG Yongjun,et al.Peak shaving optimization modeling for demand response of multiple EV aggregators considering matching degree of power grid demand[J].Electric Power Automation Equipment,2021,41(8):125-134.
- [6]蔡紫婷,彭敏放,沈美娥.考虑需求侧资源的智能小区综合能源日前优化调度[J].电力自动化设备,2021,41(3):18-24.CAI Ziting,PENG Minfang,SHEN Meie.Day-ahead optimal scheduling of smart integrated energy communities considering demand-side resources[J].Electric Power Automation Equipment,2021,41(3):18-24.
- [7]王樊云,刘敏,余登武,等.基于集群辨识的电力用户需求响应潜力评估[J].电力科学与工程,2022,38(3):25-32.WANG Fanyun,LIU Min,YU Dengwu,et al.Evaluation of power user demand response potential based on cluster identification[J].Electric Power Science and Engineering,2022,38(3):25-32.
- [8]南斌,董树锋,唐坤杰,等.考虑需求响应和源荷不确定性的光储微电网储能优化配置[J].电网技术,2023,47(4):1340-1352.NAN Bin,DONG Shufeng,TANG Kunjie,et al.Optimal configuration of energy storage in PV-storage microgrid considering demand response and uncertainties in source and load[J]. Power System Technology,2023,47(4):1340-1352.
- [9]梁纪峰,范辉,李顺,等.计及响应度的电力用户互动潜力画像分析[J].科学技术与工程,2022,22(15):6130-6138.LIANG Jifeng,FAN Hui,LI Shun,et al. Analysis of power user interaction potential portrait considering user response[J].Science Technology and Engineering,2022,22(15):6130-6138.
- [10]张凯,冯剑,刘建华,等.基于模糊C均值聚类算法的用电行为模式分类[J].电力需求侧管理,2022,24(3):98-103.ZHANG Kai,FENG Jian,LIU Jianhua,et al.Power consumption behavior pattern classification based on fuzzy Cmean clustering algorithm[J].Power Demand Side Management,2022,24(3):98-103.
- [11]赵冬梅,郭育村,郑亚锐.考虑需求响应的虚拟电厂两阶段市场竞标模型[J].现代电力,2023,40(2):182-191.ZHAO Dongmei,GUO Yucun,ZHENG Yarui. Twostage market bidding model of virtual power plant considering demand response[J].Modern Electric Power,2023,40(2):182-191.
- [12]张若愚,刘敏,李震.基于价格弹性矩阵的用户响应潜力评估方法[J].电力科学与工程,2022,38(7):17-24.ZHANG Ruoyu,LIU Min,LI Zhen.Evaluation method of user response potential based on price elasticity matrix[J].Electric Power Science and Engineering,2022,38(7):17-24.
- [13]刘浩田,陈锦,朱熹,等.一种基于价格弹性矩阵的居民峰谷分时电价激励策略[J].电力系统保护与控制,2021,49(5):116-123.LIU Haotian,CHEN Jin,ZHU Xi,et al.An incentive strategy of residential peak-valley price based on price elasticity matrix of demand[J]. Power System Protection and Control,2021,49(5):116-123.
- [14]刘国辉,赵佳,孙毅.基于模糊优化集对分析理论的需求响应潜力评估[J].电力需求侧管理,2018,20(6):1-5.LIU Guohui,ZHAO Jia,SUN Yi.Potential evaluation of demand response based on fuzzy optimization of set pair analysis[J]. Power Demand Side Management,2018,20(6):1-5.
- [15]罗金满,温兆聪,董文杰,等.基于居民用户画像的综合能源需求响应潜力量化模型[J].可再生能源,2020,38(10):1407-1414.LUO Jinman,WEN Zhaocong,DONG Wenjie,et al.Model of integrated demand response potential based on portrait of residential users[J]. Renewable Energy Resources,2020,38(10):1407-1414.
- [16]雷翔胜,伍子东,董萍,等.基于两阶段聚类分析的用电需求响应潜力评估方法[J].南方能源建设,2020,7(增刊2):1-10.LEI Xiangsheng,WU Zidong,DONG Ping,et al.Method of demand response potential assessment based on twostage cluster analysis[J]. Southern Energy Construction,2020,7(S2):1-10.
- [17]徐涛,黄莉,李敏蕾,等.基于多维细粒度行为数据的居民用户画像方法研究[J].电力需求侧管理,2019,21(3):47-52.XU Tao,HUANG Li,LI Minlei,et al.Research on portrait method of residential users based on multidimensional fine-grained behavior data[J].Power Demand Side Management,2019,21(3):47-52.
- [18]宁佳,汤奕,高丙团.基于需求响应潜力时变性的风火荷协同控制方法[J].电工技术学报,2019,34(8):1728-1738.NING Jia,TANG Yi,GAO Bingtuan. Coordinated control method of wind farm-AGC unit-load based on timevarying characteristics of demand response potential[J].Transactions of China Electrotechnical Society,2019,34(8):1728-1738.
- [19]申洪涛,陶鹏,高玲玲,等.多能互补下虚拟电厂参与电力市场的思考[J].电测与仪表,2022,59(8):66-72.SHEN Hongtao,TAO Peng,GAO Lingling,et al.Consideration of virtual power plant in the electricity market with multi-energy complement[J]. Electrical Measurement&Instrumentation,2022,59(8):66-72.
- [20]祁兵,赵燕玲,杜亚彬,等.双碳背景下基于需求响应的虚拟电厂调度策略研究[J].内蒙古电力技术,2022,40(1):33-37.QI Bing,ZHAO Yanling,DU Yabin,et al.Research on virtual power plant dispatching strategy based on demand response under dual-carbon background[J].Inner Mongolia Electric Power,2022,40(1):33-37.
- [21]李淑静,谭清坤,张煜,等.虚拟电厂关键技术及参与电力市场模式设计研究[J].电测与仪表,2022,59(12):33-40.LI Shujing,TAN Qingkun,ZHANG Yu,et al. Research on key technologies of virtual power plant and its participation in power market model design[J].Electrical Measurement&Instrumentation,2022,59(12):33-40.
- [22]宣文博,李慧,刘忠义,等.一种基于虚拟电厂技术的城市可再生能源消纳能力提升方法[J].发电技术,2021,42(3):289-297.XUAN Wenbo,LI Hui,LIU Zhongyi,et al.A method for improving the accommodating capability of urban renewable energy based on virtual power plant technology[J].Power Generation Technology,2021,42(3):289-297.
- [23]范宏,陆骁霄.基于HSS算法的多区域虚拟电厂综合能源调度[J].电测与仪表,2021,58(1):124-130.FAN Hong,LU Xiaoxiao.Integrated energy scheduling of multi-regional virtual power plants based on HSS algorithm[J]. Electrical Measurement&Instrumentation,2021,58(1):124-130.
- [24]傅质馨,李紫嫣,朱俊澎,等.面向多用户的多时间尺度电力套餐与家庭能量优化策略[J].电力系统保护与控制,2022,50(11):21-31.FU Zhixin,LI Ziyan,ZHU Junpeng,et al.Multi-user multitimescale power packages and home energy optimization strategies[J].Power System Protection and Control,2022,50(11):21-31.
- [25]徐先峰,赵依,刘状壮,等.用于短期电力负荷预测的日负荷特性分类及特征集重构策略[J].电网技术,2022,46(4):1548-1556.XU Xianfeng,ZHAO Yi,LIU Zhuangzhuang,et al.Daily load characteristic classification and feature set reconstruction strategy for short-term power load forecasting[J].Power System Technology,2022,46(4):1548-1556.
- 虚拟电厂
- 负荷弹性系数
- 需求响应潜力评估
virtual power plant - load elasticity coefficient
- demand response potential assessment