考虑调频性能的风电集群租赁储能竞价策略优化Optimization of bidding strategy for leasing energy storage of wind farm clusters considering frequency regulation performance
李咸善,胡长宇,李挺,李稳,魏洁,王仕龙
LI Xianshan,HU Changyu,LI Ting,LI Wen,WEI Jie,WANG Shilong
摘要(Abstract):
风电集群通过租赁储能参与调频市场竞价在提高风电集群运营效益的同时,助力电网调频。为此,提出考虑调频性能指标考核的风电集群租赁储能博弈优化竞价模型。模型上层为多主体参与调频市场竞价模型;下层为储能租赁价格/容量主从博弈模型,储能运营商为领导者,响应风电集群租赁计划制定租赁价格;风电集群为跟随者,根据租赁价格调整租赁计划。风电集群内部嵌套阈值公共品演化博弈模型,以解决集群内部自私个体背叛行为导致的合作困境问题。模型联合求解,得到最终风电集群租赁储能容量与调频市场竞价策略。算例结果表明,所提策略能够解决合作困境,并提升风电集群整体收益。
Wind farm clusters can enhance their operational profitability while supporting grid frequency regulation by participating in frequency regulation markets through the leasing of energy storage. To achieve this, a gametheoretic optimization bidding model is proposed for leasing energy storage of wind farm clusters, considering frequency regulation performance indicator assessment. The model consists of two layers: the upper layer models the bidding process in the frequency regulation market with multiple participants, while the lower layer models a leaderfollower game between energy storage lessors and wind farm clusters regarding leasing price and capacity. In this game, the energy storage operator acts as the leader, setting the leasing price in response to the leasing plan of wind farm clusters, and the wind farm clusters, as the follower, adjust the leasing plan according to the price. Additionally, an evolutionary threshold public goods game model is embedded within the wind farm clusters to address the cooperation dilemma caused by selfish behavior among individual members. By united solution of the model, the bidding strategy for leasing energy storage capacity and participating in the frequency regulation market is obtained.The case study results demonstrate that the proposed strategy effectively resolves the cooperation dilemma and enhances the overall profitability of the wind farm clusters.
关键词(KeyWords):
调频性能指标考核;租赁储能;多主体竞价;主从博弈;阈值公共品演化博弈
frequency regulation performance indicator assessment;leasing energy storage;multi-agent bidding;leader-follower game;revolutionary threshold public goods game
基金项目(Foundation): 湖北省自然科学基金联合基金(2022CFD167)
作者(Author):
李咸善,胡长宇,李挺,李稳,魏洁,王仕龙
LI Xianshan,HU Changyu,LI Ting,LI Wen,WEI Jie,WANG Shilong
DOI: 10.19585/j.zjdl.202410010
参考文献(References):
- [1]陈国平,董昱,梁志峰.能源转型中的中国特色新能源高质量发展分析与思考[J].中国电机工程学报,2020,40(17):5493-5505.CHEN Guoping,DONG Yu,LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE,2020,40(17):5493-5505.
- [2]张旭,陈云龙,岳帅,等.风电参与电力系统调频技术研究的回顾与展望[J].电网技术,2018,42(6):1793-1803.ZHANG Xu,CHEN Yunlong,YUE Shuai,et al. Retrospect and prospect of research on frequency regulation technology of power system by wind power[J]. Power System Technology,2018,42(6):1793-1803.
- [3]国家能源局华中监管局.华中能源监管局关于《江西电力调频辅助服务市场交易规则(征求意见稿)》公开征求意见的通知[EB/OL].(2022-06-14)[2024-04-15].https://hzj. nea. gov. cn/dtyw/tzgg/202310/t20231021_165587.html.
- [4]王晛,张梓彦,张少华,等.考虑新能源发电商租赁共享储能的电力市场博弈分析[J/OL].电网技术,1-19[2024-03-31]. https://doi. org/10.13335/j. 1000-3673. pst. 2024.0181.WANG Xian,ZHANG Ziyan,ZHANG Shaohua,et al.Power market game analysis considering the lease of shared energy storage by new energy generators[J/OL].Power Grid Technology,1-19[2024-03-31]. https://doi.org/10.13335/j.1000-3673.pst.2024.0181.
- [5]陆秋瑜,罗澍忻,胡伟,等.集群风储联合系统广域协调控制及利益分配策略[J].电力系统自动化,2019,43(20):183-191.LU Qiuyu,LUO Shuxin,HU Wei,et al.Wide-area coordinated control and benefit assignment strategy of clustering wind-energy storage integrated system[J].Automation of Electric Power Systems,2019,43(20):183-191.
- [6]鲁明芳,李咸善,李飞,等.基于双层博弈优化的光伏电站集群储能租赁配置策略[J].中国电机工程学报,2022,42(16):5887-5898.LU Mingfang,LI Xianshan,LI Fei,et al.Strategy of energy storage leasing configuration of photovoltaic power station cluster based on Bi-level game optimization[J].Proceedings of the CSEE,2022,42(16):5887-5898.
- [7]刘林鹏,陈嘉俊,朱建全,等.风储联合参与电能量与快速调频市场的优化投标策略[J].华电技术,2021,43(9):46-53.LIU Linpeng,CHEN Jiajun,ZHU Jianquan,et al.Optimization bidding strategy for wind power and energy storage participating in energy market[J]. Huadian Technology,2021,43(9):46-53.
- [8]葛晓琳,凡婉秋,符杨,等.基于改进柔性策略评价的风火储多主体博弈电能-调频市场联合竞价模型[J].电网技术,2023,47(5):1920-1930.GE Xiaolin,FAN Wanqiu,FU Yang,et al.Joint bidding model of electricity and frequency regulation market with wind fire storage multi-agent games based on improved soft actor-critic[J]. Power System Technology,2023,47(5):1920-1930.
- [9]张巍,缪辉.基于云储能租赁服务的风储参与能量-调频市场竞价策略研究[J].电网技术,2021,45(10):3840-3850.ZHANG Wei,MIAO Hui. Bidding strategies of wind power and energy storage participating in energy and frequency regulation market based on cloud energy storage leasing services[J].Power System Technology,2021,45(10):3840-3850.
- [10]王杰,方日升,温步瀛.风储联合系统参与能量市场和调频辅助服务市场协同优化[J].电器与能效管理技术,2019(20):51-57.WANG Jie,FANG Risheng,WEN Buying.Collaborative optimization in energy and frequency regulation markets for wind farm with energy storage[J].Electrical&Energy Management Technology,2019(20):51-57.
- [11]陈达鹏,荆朝霞.美国调频辅助服务市场的调频补偿机制分析[J].电力系统自动化,2017,41(18):1-9.CHEN Dapeng,JING Zhaoxia. Analysis of frequency modulation compensation mechanism in frequency modulation ancillary service market of the United States[J].Automation of Electric Power Systems,2017,41(18):1-9.
- [12]王楠,李振,周喜超,等.发电厂AGC与储能联合调频特性及仿真[J].热力发电,2021,50(8):148-156.WANG Nan,LI Zhen,ZHOU Xichao,et al.Characteristics research on combined frequency modulation of AGC and energy storage in power plant and the simulation[J].Thermal Power Generation,2021,50(8):148-156.
- [13]陈中飞,荆朝霞,陈达鹏,等.美国调频辅助服务市场的定价机制分析[J].电力系统自动化,2018,42(12):1-10.CHEN Zhongfei,JING Zhaoxia,CHEN Dapeng,et al.Analysis on pricing mechanism in frequency regulation ancillary service market of United States[J].Automation of Electric Power Systems,2018,42(12):1-10.
- [14]唐夏菲,吴献祥,任青青,等.利用云储能租赁服务的风电场储能容量优化配置[J].电力科学与技术学报,2020,35(1):90-95.TANG Xiafei,WU Xianxiang,REN Qingqing,et al.Optimized configuration of energy storage capacity of wind farms using cloud energy storage leasing services[J].Journal of Electric Power Science and Technology,2020,35(1):90-95.
- [15] LUO S J,CHEN C M,QIU W Q,et al.Bi-layer optimal planning of rural distribution network based on KKT condition and Big-M method[J]. Energy Reports,2021,7:637-644.
- [16] ARCHETTI M,SCHEURING I.Coexistence of cooperation and defection in public goods games[J].Evolution;International Journal of Organic Evolution,2011,65(4):1140-1148.