浙江电网自然灾害特征、趋势与预测技术概况An Overview on Characteristics, Tendency and Prediction Technology of Natural Disasters in Zhejiang Power Grid
周象贤,刘黎,王少华,邵先军,李特,王振国,刘岩,曹俊平,葛黄徐,王谦
ZHOU Xiangxian,LIU Li,WANG Shaohua,SHAO Xianjun,LI Te,WANG Zhenguo,LIU Yan,CAO Junping,GE Huangxu,WANG Qian
摘要(Abstract):
浙江电网长期运行于自然灾害频发地区,通过对浙江电网自然灾害总体情况、空间特征和时间特征的分析,总结了浙江电网自然灾害中存在的规律并阐释了规律背后的机理。对自然灾害的长期变化规律进行分析,对雷击、台风、覆冰等灾害长期趋势进行预测,并分析了非常规自然灾害的特点。对浙江电网自然灾害预测技术概况进行讨论,提出应用人工智能中的机器学习方法是提升电网自然灾害预测精度的有效途径。希望通过对电网自然灾害特征、趋势与预测技术的讨论,为电网防灾减灾工作提供有益的经验。
Zhejiang power grid has long been operating in natural disaster-prone areas. By analyzing the overall situation, spatial and temporal characteristics of natural disasters in Zhejiang power grid, the paper summarizes the regularity of the natural disasters and expounds the mechanism behind them. Then, this paper analyzes the long-term change regularity of the natural disasters, predicts the long-term trends of lightning strike, typhoon, and icing, and analyzes the characteristics of unconventional natural disasters. Finally, this paper gives a brief account of the natural disaster prediction technology and proposes that the application of machine learning in AI(artificial intelligence) opens up a new avenue of natural disaster prediction precision improvement. It is hoped that the discussion of characteristics, tendency and prediction technology of natural disasters can afford experience for disaster prevention and mitigation in power grid.
关键词(KeyWords):
台风;冰害;雷击;人工智能;灾害趋势;灾害预测
typhoon;icing disaster;lightning;AI;disaster trend;disaster prediction
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS19001W);; 国家重点研发计划项目(2018YFC0809403)
作者(Author):
周象贤,刘黎,王少华,邵先军,李特,王振国,刘岩,曹俊平,葛黄徐,王谦
ZHOU Xiangxian,LIU Li,WANG Shaohua,SHAO Xianjun,LI Te,WANG Zhenguo,LIU Yan,CAO Junping,GE Huangxu,WANG Qian
DOI: 10.19585/j.zjdl.202105004
参考文献(References):
- [1]孙萍.220 kV新杭线Ⅰ回路26年全线实测雷电流幅值的统计分析[J].浙江电力,1994,13(2):17-26.
- [2]童杭伟,李思南,杨立川.以雷电日和落雷密度为参数的输电线路雷击跳闸率计算的对比分析[J].浙江电力,2006,25(1):48-49.
- [3]吴明祥,包建强,叶尹,等.超强台风“桑美”引起温州电网输电线路事故的分析[J].电力建设,2007,28(9):39-41.
- [4]王少华,叶自强.恶劣气候对浙江电网输电线路的影响[J].中国电力,2011,44(2):19-22.
- [5]王少华.输电线路典型覆冰事故及防治技术分析[J].高压电器,2010,46(10):85-89.
- [6]ZHOU X,LI T,JIANG W,et al.Designing and application of high voltage overhead transmission line typhoon disaster prediction method[C]//Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control.Springer,Singapore,2020:769-777.
- [7]ZHOU X,WANG S,ZHOU X,et al.Analysis of lightning performance of overhead transmission lines with insulator parallel gaps[C]//2019 IEEE 3rd International Conference on Circuits,Systems and Devices(ICCSD).IEEE,2019:87-91.
- [8]ZHOU X,WANG Z,LIU Y,et al.Characteristics of lightning faults of 220 kV and above overhead transmission Lines in Zhejiang Province in last 15 years[C]//The 4th IEEE Conference on Energy Internet and Energy System Integration.Wuhan,2020.
- [9]ZHOU X,XU J,WANG S,et al.Characteristics of faults of high voltage overhead transmission lines caused by typhoon in east coast of China[C]//The 16th IET International Conference on AC and DC Power Transmission,2020.
- [10]李特,吴金木,陈乔,等.基于大气环境质量及气象参数的绝缘子积污预测研究现状[J].高压电器,2017,53(1):175-180.
- [11]周象贤,孙翔,金佳敏.终端变电站单相接地故障时变压器中性点过电压仿真与分析[J].浙江电力,2015,34(5):1-5.
- [12]周钦华,刘小根,戚优华,等.浙江沿海海陆风环流特征研究[J].浙江大学学报(理学版),1987,14(1):109-120.
- [13]孔锋,郭君,王一飞,等.近56年来中国雷暴日数的时空分异特征[J].灾害学,2018,33(3):87-95.
- [14]YING M,ZHANG W,YU H,LU X,et al.An overview of the China Meteorological Administration tropical cyclone database[J].Journal of Atmospheric and Oceanic Technology,2014,31(2):287-301.
- [15]LU X,YU Q H,YING M,et al.Western north pacific tropical cyclone database created by the China Meteorological Administration[J].Advances in Atmospheric Sciences,2021,38(4):690-699.
- [16]Explaining o cean warming:Causes,scale,effects and consequences[M].Switzerland:IUCN,2016.
- [17]KNUTSON T,CAMARGO S J,CHAN J C L,et al.Tropical cyclones and climate change assessment:Part II:Projected response to anthropogenic warming[J].Bulletin of the American Meteorological Society,2020,101(3):E303-E322.
- [18]KOSSIN J P,EMANUEL K A,VECCHI G A.The poleward migration of the location of tropical cyclone maximum intensity[J].Nature,2014,509(7500):349-352.
- [19]康丽莉,邓芳萍,岳平,等.一种浙江省冻雨落区的推算方法[J].气象,2017,43(6):756-761.
- [20]康丽莉,邓芳萍,姜文东,等.宁波北仑地区的一次冻雨过程分析[J].浙江气象,2017,37(4):1-5.
- [21]BAI L,MENG Z,SUEKI K,et al.Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Science China Earth Sciences[J].2019(62):1-15.
- [22]周象贤,蒋愉宽,李特.高压输电线路载流量计算软件的开发[J].浙江电力,2015,34(8):9-12.
- [23]POWERS J G,KLEMP J B,SKAMAROCK W C,et al.The weather research and forecasting model:Overview,system efforts,and future directions[J].Bulletin of the American Meteorological Society,2017,98(8):1717-1737.
- [24]ALIGO E A,GALLUS W A,SEGAL M.On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts[J].Weather and forecasting,2009,24(2):575-594.
- [25]RUSSELL S,NORVIG P.Artificial intelligence:a modern approach[M].Upper Saddle River,NJ,USA:Prentice Hall,2002.
- [26]JORDAN M I,MITCHELL T M.Machine learning:Trends,perspectives, and prospects[J].Science,2015,349(6245):1-20.
- [27]周象贤,姜文东,邵先军,等.一种基于分类决策树的高压架空输电线路台风灾害预警方法:201911211112.0[P].2019-12-02.
- [28]PASZKE A,GROSS S,MASSA F,et al.PyTorch:An Im perative Style,High-Performance Deep Learning Library[J].arxiv preprint arxiv:1912.01703,2019.
- [29]PEDREGOSA F,VAROQUAUX G,GRAMFORT A,et al.Scikit-learn:Machine learning in Python[J].the Journal of machine Learning research,2011(12):2825-2830.