浙江电力

2023, v.42;No.330(10) 45-56

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

“双碳”目标下绿色人工智能技术研究综述
A review of green AI research under carbon peaking and neutrality goals

卢毓东,陈益
LU Yudong,CHEN Yi

摘要(Abstract):

人工智能大规模训练导致了计算资源需求、能源需求及碳排放量的急剧攀升,不仅使人工智能技术自身实现“双碳”目标受到了严峻挑战,也限制了人工智能在电力巡检机器人、无人机等的边缘设备中的应用。在“双碳”目标下的电网数字化转型期,研究绿色人工智能技术,实现节能减碳,对促进新型电力系统建设和人工智能技术进步具有重要意义。首先介绍了绿色人工智能的由来、定义及影响模型能耗的关键因素;接着探讨了绿色人工智能模型技术的发展现状、关键问题、改进方法和效果;然后讨论了高效硬件基础设施节能减碳的措施;最后对绿色人工智能技术的未来发展提出相关建议和展望。
The large-scale training of artificial intelligence(AI) has led to a significant surge in computational resource demands, energy consumption, and carbon emissions, which not only poses severe challenges to the realization of carbon peaking and neutrality goals by AI technology itself, but also impedes the application of AI in edge devices such as power inspection robots and UAVs. During the digital transformation of power grids under carbon peaking and neutrality goals, study of green AI for energy saving and carbon reduction is of great significance to the construction of new power systems and the advancement of AI. Firstly, the origin and definition of green AI and the key factors affecting the energy consumption of the model are introduced; then the current development status, key issues, improvement methods and effects of green AI model technology are discussed. Afterwards, the energy-saving and carbon reduction measures of high-efficiency physical infrastructures are discussed. Finally, the relevant suggestions and outlooks for the future development of green AI are presented.

关键词(KeyWords): 绿色人工智能;新型电力系统;节能;碳排放;模型加速
green AI;new-type power systems;energy conservation;carbon emission;model acceleration

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS22001L)

作者(Author): 卢毓东,陈益
LU Yudong,CHEN Yi

DOI: 10.19585/j.zjdl.202310006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享