柔性励磁提升受端电网暂态稳定特性研究Research on flexible excitation system applied to improve transient stability characteristics of the receiving-end power grid
王龙飞,张建承,王博文,卓谷颖,华文,熊鸿韬
WANG Longfei,ZHANG Jiancheng,WANG Bowen,ZHUO Guying,HUA Wen,XIONG Hongtao
摘要(Abstract):
目前同步机采用的传统励磁系统暂态强励能力有限且无法有效维持,而柔性励磁系统能有效提升机组的暂态强励顶值,并通过直流母线电压的控制维持其故障期间及故障清除后的强励能力,因此针对关键机组应用柔性励磁系统以提升局部电网暂态稳定特性进行了研究。介绍了柔性励磁的硬件拓扑结构及控制方法,分析提升机组暂态稳定特性的柔性励磁控制目标。在存在暂态稳定问题的受端实际电网有针对性地对关键机组进行柔性励磁应用,并在仿真中验证应用实施后该电网暂态稳定提升效果。结果表明,有限的关键机组应用柔性励磁后,能有效提升电网的暂态稳定特性。
The transient forced excitation of the traditional excitation system used for synchronous condenser is limited and unmaintainable. A flexible excitation system can improve the crest value of transient forced excitation and maintain the forced excitation capacity during and after faults through DC bus voltage control. Therefore,a study is conducted on applying a flexible excitation system for critical units to improve the transient stability characteristics of local power grids. The hardware topology and control method of flexible excitation are introduced,and the flexible excitation control objective to enhance the transient stability characteristics of the units is analyzed. The flexible excitation is applied to the critical units in the actual grid at the receiving end with transient stability problems. The transient stability enhancement effect of the grid is verified in the simulation after the application. The results show that applying flexible excitation to a limited number of critical units can effectively improve the transient stability characteristics of power grid.
关键词(KeyWords):
暂态稳定;柔性励磁;顶值强励
transient stability;flexible excitation;ceiling forced excitation
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS19002L)
作者(Author):
王龙飞,张建承,王博文,卓谷颖,华文,熊鸿韬
WANG Longfei,ZHANG Jiancheng,WANG Bowen,ZHUO Guying,HUA Wen,XIONG Hongtao
DOI: 10.19585/j.zjdl.202210010
参考文献(References):
- [1]国家电网公司.国家电网公司发布“碳达峰,碳中和”行动方案[N].国家电网报,2021-03-02(001).
- [2]王龙飞,华文,石博隆,等.抑制直流连续换相失败的调相机暂态强励控制策略[J].浙江电力,2020,39(8):13-19.
- [3]袁小明,何维.动态过程的幅频调制统一本质与系统稳定问题分类及新能源发电构网能力创新[J].电源学报,2021,19(6):1-9.
- [4]李光琦.电力系统暂态分析[M].北京:中国电力出版社,2007.
- [5]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
- [6]韩英铎,谢小荣,崔文进.同步发电机励磁控制研究的现状与走向[J].清华大学学报:自然科学版,2001,41(4):5.
- [7]毛承雄,吴建东,娄慧波,等.基于电流源型变换器的大型同步发电机励磁[J].水电能源科学,2008,26(3):172-175.
- [8]杨嘉伟,吴建东,毛承雄,等.全控器件励磁系统改善电力系统阻尼特性的研究[J].大电机技术,2012(3):63-67.
- [9]何丽娜,毛承雄,陆继明,等.采用大功率电力电子全控器件的新型励磁系统[J].高电压技术,2009,35(7):1711-1717.
- [10]余明浩,贺思林,程丽平,等.柔性励磁系统的强励协调控制策略[J].大电机技术,2020(1):59-65.
- [11]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
- [12]吴俊健,余明浩,毛承雄,等.柔性励磁系统输出过电压分析[J].浙江电力,2019,38(5):68-76.
- [13]汤涌,仲悟之,孙华东,等.电力系统电压稳定机理研究[J].电网技术,2010,34(4):24-29.
- [14]孙华东,周孝信,李若梅.感应电动机负荷参数对电力系统暂态电压稳定性的影响[J].电网技术,2005,29(23):1-6.
- [15]王正风,黄太贵.发电机无功功率与机端电压对系统暂态功角稳定性的影响分析[J].电网与清洁能源,2010,26(3):36-40.