计及源-荷联合出力特性的配电网多目标优化调度Multi-objective optimal scheduling of distribution networks considering joint source-load output characteristics
赵航,孙改平,陈耿,林顺富
ZHAO Hang,SUN Gaiping,CHEN Geng,LIN Shunfu
摘要(Abstract):
针对大规模分布式光伏出力的不确定性给配电网稳定运行带来的挑战,提出一种计及源-荷联合出力特性的配电网多目标优化调度模型。首先,考虑分布式光伏与负荷的时空关联特征,以主成分分析提取的耦合气象要素为基础,构建源-荷联合场景集以表征不确定性。然后,建立最小化系统运行成本、电压偏差与净负荷波动率的多目标优化模型,通过NSGA-Ⅲ(非支配排序遗传算法Ⅲ)求得Pareto前沿解集,并以熵权TOPSIS法选择多目标最优解。最后,基于改进的IEEE 33节点系统开展仿真验证,结果表明,以耦合气象要素构建的联合场景可有效表征源-荷出力不确定性,所提优化策略在降低运行成本及保持电压稳定的同时提高了配电网运行的灵活性。
Addressing the challenges posed by the uncertainty of large-scale distributed photovoltaic(PV) output to the stable operation of distribution networks, this paper proposes a multi-objective optimal scheduling model that considers the joint source-load output characteristics. First, considering the spatiotemporal correlation between distributed PV and loads, a set of joint source-load scenarios is constructed based on coupled meteorological features extracted via principal component analysis(PCA) to characterize uncertainty. Then, a multi-objective optimization model is established to minimize system operating costs, voltage deviation, and net load fluctuation rate. The Paretooptimal solution set is obtained using the non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ), and the entropyweighted technique for order preference by similarity to ideal solution(TOPSIS) method is employed to select the multi-objective optimal solution. Finally, simulation studies based on a modified IEEE 33-bus system demonstrate that the joint scenarios constructed with coupled meteorological features effectively characterize source-load uncertainty. The proposed optimization strategy reduces operating costs and maintains voltage stability while enhancing the operational flexibility of the distribution network.
关键词(KeyWords):
耦合气象特征;源-荷联合场景;源-荷-储协调;多目标优化调度;NSGA-Ⅲ
coupled meteorological characteristics;joint source-load scenarios;source-load-storage coordination;multi-objective optimal scheduling;NSGA-Ⅲ
基金项目(Foundation): 国家自然科学基金(51977127)
作者(Author):
赵航,孙改平,陈耿,林顺富
ZHAO Hang,SUN Gaiping,CHEN Geng,LIN Shunfu
DOI: 10.19585/j.zjdl.202511008
参考文献(References):
- [1]郭强.分布式光伏并网发电现状及应用研究[J].中国高新科技,2021(2):34-35.GUO Qiang.Research on the status and application of distributed photovoltaic grid-connected power generation[J].China High-Tech,2021(2):34-35.
- [2]赵坤.既要促进发展又要规范市场[N].中国电力报,2025.
- [3]栗峰,丁杰,周才期,等.新型电力系统下分布式光伏规模化并网运行关键技术探讨[J].电网技术,2024,48(1):184-199.LI Feng,DING Jie,ZHOU Caiqi,et al.Key technologies of large-scale grid-connected operation of distributed photovoltaic under new-type power system[J].Power System Technology,2024,48(1):184-199.
- [4]王洪坤,王守相,潘志新,等.含高渗透分布式电源配电网灵活性提升优化调度方法[J].电力系统自动化,2018,42(15):86-93.WANG Hongkun,WANG Shouxiang,PAN Zhixin,et al.Optimized dispatching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems,2018,42(15):86-93.
- [5]王守相,陈海文,李小平,等.风电和光伏随机场景生成的条件变分自动编码器方法[J].电网技术,2018,42(6):1860-1869.WANG Shouxiang,CHEN Haiwen,LI Xiaoping,et al.Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J].Power System Technology,2018,42(6):1860-1869.
- [6] CHEN Y Z,WANG Y S,KIRSCHEN D,et al.Modelfree renewable scenario generation using generative adversarial networks[C]//2019 IEEE Power&Energy Society General Meeting(PESGM). August 4-8,2019,Atlanta,GA,USA.IEEE,2019.
- [7]鲍海波,郭小璇.求解含风电相关性区间潮流的仿射变换最优场景法[J].电力系统保护与控制,2020,48(18):114-122.BAO Haibo,GUO Xiaoxuan.Optimal scenario algorithm based on affine transformation applied to interval power flow considering correlated wind power[J].Power System Protection and Control,2020,48(18):114-122.
- [8] WANG C,LI X,SHI Y,et al. Load forecasting method based on CNN and extended LSTM[J].Energy Reports,2024,12:2452-2461.
- [9]曲凯,李湃,黄越辉,等.面向新能源消纳能力评估的年负荷序列建模及场景生成方法[J].电力系统自动化,2021,45(1):123-131.QU Kai,LI Pai,HUANG Yuehui,et al.Modeling and scenario generation method of annual load series for evaluation of renewable energy accommodation capacity[J].Automation of Electric Power Systems,2021,45(1):123-131.
- [10]黄悦华,刘兴韬,张磊,等.基于C藤Copula及条件风险价值的综合能源系统灵活爬坡优化调度[J].中国电机工程学报,2023,43(24):9411-9423.HUANG Yuehua,LIU Xingtao,ZHANG Lei,et al.Flexible ramping optimal scheduling of integrated energy system based on C-vine copula and conditional value at risk[J].Proceedings of the CSEE,2023,43(24):9411-9423.
- [11]姚明明,张新,杨培宏,等.基于改进风光场景聚类联合虚拟储能的源网荷储低碳优化调度[J].电力系统保护与控制,2024,52(15):115-130.YAO Mingming,ZHANG Xin,YANG Peihong,et al.Low-carbon optimal scheduling of source-grid-load-storage based on improved wind-solar scene clustering combined with virtual energy storage[J]. Power System Protection and Control,2024,52(15):115-130.
- [12]林顺富,张琪,沈运帷,等.面向灵活爬坡服务的高比例新能源电力系统可调节资源优化调度模型[J].电力系统保护与控制,2024,52(2):90-100.LIN Shunfu,ZHANG Qi,SHEN Yunwei,et al.Optimal dispatch model of adjustable resources in a power system with high proportion of renewable energy for flexible ramping product[J]. Power System Protection and Control,2024,52(2):90-100.
- [13]王磊,姜涛,宋丹,等.基于灵活热电比的区域综合能源系统多目标优化调度[J].电力系统保护与控制,2021,49(8):151-159.WANG Lei,JIANG Tao,SONG Dan,et al. Multiobjective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J].Power System Protection and Control,2021,49(8):151-159.
- [14]肖浩,裴玮,孔力.含大规模电动汽车接入的主动配电网多目标优化调度方法[J].电工技术学报,2017,32(增刊2):179-189.XIAO Hao,PEI Wei,KONG Li.Multi-objective optimization scheduling method for active distribution network with large scale electric vehicles[J].Transactions of China Electrotechnical Society,2017,32(S2):179-189.
- [15]倪爽,崔承刚,郑庆荣,等.基于多风电相关性场景生成法的配电网随机多目标无功优化[J].浙江电力,2020,39(11):103-111.NI Shuang,CUI Chenggang,ZHENG Qingrong,et al.Stochastic multi-objective reactive power optimization of distribution network based on multiple wind turbines correlative scenario generation method[J]. Zhejiang Electric Power,2020,39(11):103-111.
- [16]张晓英,张艺,王琨,等.基于改进NSGA-Ⅱ算法的含分布式电源配电网无功优化[J].电力系统保护与控制,2020,48(1):55-64.ZHANG Xiaoying,ZHANG Yi,WANG Kun,et al.Reactive power optimization of distribution network with distributed generations based on improved NSGA-Ⅱalgorithm[J].Power System Protection and Control,2020,48(1):55-64.
- [17]刘丽军,笪超,罗宁,等.基于出力曲线聚合与区间潮流典型场景耐受度评价的新能源发电规划方法[J].中国电机工程学报,2020,40(14):4400-4410.LIU Lijun,DA Chao,LUO Ning,et al.A planning method of renewable distributed generation based on polymerization of output curves and tolerance evaluation of typical scene in interval power flow[J].Proceedings of the CSEE,2020,40(14):4400-4410.
- [18] AL-OTAIBI R,JIN N L,WILCOX T,et al.Feature construction and calibration for clustering daily load curves from smart-meter data[J]. IEEE Transactions on Industrial Informatics,2016,12(2):645-654.
- [19]廖望,刘东,巫宇锋,等.考虑源荷不确定性及用户响应行为的电力系统低碳经济调度[J].中国电机工程学报,2024,44(3):905-918.LIAO Wang,LIU Dong,WU Yufeng,et al.Low-carbon economic dispatch of power system considering sourceload uncertainties and users response behavior[J].Proceedings of the CSEE,2024,44(3):905-918.
- [20]黄南天,王文婷,蔡国伟,等.计及复杂气象耦合特性的模块化去噪变分自编码器多源-荷联合场景生成[J].中国电机工程学报,2019,39(10):2924-2934.HUANG Nantian,WANG Wenting,CAI Guowei,et al.The joint scenario generation of multi source-load by modular denoising variational autoencoder considering the complex coupling characteristics of meteorology[J]. Proceedings of the CSEE,2019,39(10):2924-2934.
- [21]李小腾,薛成,张艳丽,等.考虑新能源不确定出力的有功无功协调降损控制策略研究[J].电网与清洁能源,2024,40(2):135-141.LI Xiaoteng,XUE Cheng,ZHANG Yanli,et al.Research on active and reactive power coordination loss reduction control strategy considering the uncertain output of new energy[J].Power System and Clean Energy,2024,40(2):135-141.
- [22] DAS I,DENNIS J E. Normal-boundary intersection:a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization,1998,8(3):631-657.
- 耦合气象特征
- 源-荷联合场景
- 源-荷-储协调
- 多目标优化调度
- NSGA-Ⅲ
coupled meteorological characteristics - joint source-load scenarios
- source-load-storage coordination
- multi-objective optimal scheduling
- NSGA-Ⅲ