浙江电力

2025, v.44;No.355(11) 83-92

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

计及源-荷联合出力特性的配电网多目标优化调度
Multi-objective optimal scheduling of distribution networks considering joint source-load output characteristics

赵航,孙改平,陈耿,林顺富
ZHAO Hang,SUN Gaiping,CHEN Geng,LIN Shunfu

摘要(Abstract):

针对大规模分布式光伏出力的不确定性给配电网稳定运行带来的挑战,提出一种计及源-荷联合出力特性的配电网多目标优化调度模型。首先,考虑分布式光伏与负荷的时空关联特征,以主成分分析提取的耦合气象要素为基础,构建源-荷联合场景集以表征不确定性。然后,建立最小化系统运行成本、电压偏差与净负荷波动率的多目标优化模型,通过NSGA-Ⅲ(非支配排序遗传算法Ⅲ)求得Pareto前沿解集,并以熵权TOPSIS法选择多目标最优解。最后,基于改进的IEEE 33节点系统开展仿真验证,结果表明,以耦合气象要素构建的联合场景可有效表征源-荷出力不确定性,所提优化策略在降低运行成本及保持电压稳定的同时提高了配电网运行的灵活性。
Addressing the challenges posed by the uncertainty of large-scale distributed photovoltaic(PV) output to the stable operation of distribution networks, this paper proposes a multi-objective optimal scheduling model that considers the joint source-load output characteristics. First, considering the spatiotemporal correlation between distributed PV and loads, a set of joint source-load scenarios is constructed based on coupled meteorological features extracted via principal component analysis(PCA) to characterize uncertainty. Then, a multi-objective optimization model is established to minimize system operating costs, voltage deviation, and net load fluctuation rate. The Paretooptimal solution set is obtained using the non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ), and the entropyweighted technique for order preference by similarity to ideal solution(TOPSIS) method is employed to select the multi-objective optimal solution. Finally, simulation studies based on a modified IEEE 33-bus system demonstrate that the joint scenarios constructed with coupled meteorological features effectively characterize source-load uncertainty. The proposed optimization strategy reduces operating costs and maintains voltage stability while enhancing the operational flexibility of the distribution network.

关键词(KeyWords): 耦合气象特征;源-荷联合场景;源-荷-储协调;多目标优化调度;NSGA-Ⅲ
coupled meteorological characteristics;joint source-load scenarios;source-load-storage coordination;multi-objective optimal scheduling;NSGA-Ⅲ

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(51977127)

作者(Author): 赵航,孙改平,陈耿,林顺富
ZHAO Hang,SUN Gaiping,CHEN Geng,LIN Shunfu

DOI: 10.19585/j.zjdl.202511008

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享