浙江电力

2025, v.44;No.347(03) 116-124

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于马尔可夫转移场的SF6分解气体紫外吸收光谱检测
Detection of SF6 decomposition gases using ultraviolet absorption spectroscopy based on Markov transition fields

王秀君,罗林,于淼,曹宇鹏
WANG Xiujun,LUO Lin,YU Miao,CAO Yupeng

摘要(Abstract):

气体绝缘开关设备绝缘故障引起的局部放电会导致绝缘介质SF_6气体分解,分解产生的氟硫化物会与设备中的水分和氧气发生反应,生成SO_2、CS_2和H_2S等化合物,这3种特征气体的浓度能够反映绝缘故障的类型和严重程度。对此,提出一种基于MFT(马尔可夫转移场)和深度学习的方法,用于分析特征气体的紫外光谱图,识别具有重叠吸收峰的痕量气体混合物。该方法首先将一维序列数据转化为二维图像,使混合气体的紫外光谱数据以图像形式呈现,从而使其特征信息更加直观。随后,将这些图像输入至深度学习模型中进行识别分类。实验结果表明,与其他模型相比,该方法具有更高的识别准确率。
Partial discharge caused by insulation faults in gas-insulated switchgear can lead to the decomposition of the insulating medium,SF_6 gas.The byproducts of this decomposition,fluorosulfides,can react with moisture and oxygen in the equipment,generating compounds like SO_2,CS_2,and H_2S.The concentrations of these three characteristic gases can reflect the type and severity of insulation faults in the equipment.To address this,the paper proposes a method based on Markov transfer fields (MTF) and deep learning to analyze the ultraviolet spectra of these characteristic gases and identify trace gas mixtures with overlapping absorption peaks.This method first converts one-dimensional sequence data into two-dimensional images,presenting the ultraviolet spectral data of the mixed gases in a more intuitive image format.Subsequently,these images are input into a deep learning model for classification and recognition.Experimental results demonstrate that this method achieves a higher recognition accuracy compared to other models.

关键词(KeyWords): 紫外吸收光谱法;马尔可夫转移场;深度学习
ultraviolet absorption spectroscopy;MTF;deep learning

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金青年项目资助(61703191);; 工业控制技术国家重点实验室开放课题资助(ICT202B41)

作者(Author): 王秀君,罗林,于淼,曹宇鹏
WANG Xiujun,LUO Lin,YU Miao,CAO Yupeng

DOI: 10.19585/j.zjdl.202503013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享