浙江电力

2023, v.42;No.326(06) 112-118

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进SegNet的电力线自动检测方法
An automatic power line inspection method based on an improved SegNet network

杨坚,李剑,徐硕
YANG Jian,LI Jian,XU Shuo

摘要(Abstract):

无人机自动巡检是输电线路智能化巡检的重要环节。针对巡检过程中无人机拍摄的视频图像背景复杂、电力线检测精度差、检测速率较低等问题,提出一种基于改进SegNet模型的电力线检测算法。首先,在编码器中引入残差模块和非对称卷积,减小网络计算负担;其次,减少解码层网络层数,并对编码器与解码器进行特征融合,提高检测精度;最后,利用改进SegNet在构建的电力线数据集中进行训练,准确率和交并比均值分别达到了89.4%和86.62%,单张检测时间仅46 ms。实验结果表明,基于改进SegNet模型的电力线检测算法可实现较高精度的实时检测。
UAVs(unmanned aerial vehicles) are now involved in intelligent transmission line inspection. Given the complex image backgrounds captured by UAVs and poor line inspection accuracy and low detection speed of UAVs, the paper proposes a power line inspection algorithm based on an improved SegNet model. Firstly, residual modules and asymmetric convolutions are introduced into the encoder to reduce the computational burden on the network.Secondly, the network layers of the decoding layer are reduced, and the features of the encoder and decoder are fused to improve inspection accuracy. Finally, the improved SegNet algorithm is used to train the power line dataset.The accuracy and mean intersection over union reach up to 89.4% and 86.62% respectively, and the single detection time is 46 ms. The experimental results show that the algorithm based on the improved SegNet model can achieve high-precision and real-time power line detection.

关键词(KeyWords): 无人机巡检;深度学习;改进SegNet;残差模块;非对称卷积
UAV inspection;deep learning;improved SegNet;residual module;asymmetric convolution

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ2000M7)

作者(Author): 杨坚,李剑,徐硕
YANG Jian,LI Jian,XU Shuo

DOI: 10.19585/j.zjdl.202306013

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享