浙江电力

2021, v.40;No.304(08) 40-46

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于改进FasterRCNN的绝缘子异常检测
Insulator Anomaly Detection Based on an Improved Faster RCNN

何文其,李剑,赵文浩
HE Wenqi,LI Jian,ZHAO Wenhao

摘要(Abstract):

绝缘子在保证电力传输安全性方面起着重要作用,为提高绝缘子异常检测效率,提出了一种基于改进的FasterRCNN目标检测模型并将其应用于绝缘子检测中。首先,通过无人机采集航拍的图像样本,利用水平翻转、旋转变换、色域变换等通用图像增强方法扩增样本数量,采用Label Img标注工具对各图像样本进行标注,完成绝缘子数据集的搭建。通过K-means聚类计算得到绝缘子数据集的最优先验锚框。针对破碎绝缘子占比小的问题,提出一种拷贝数据增强的方法,解决绝缘子不均衡问题。最后,通过实验对比分析了主干网络、拷贝数据增强和Focal Loss对网络性能的影响,得出结论:所提出的改进FasterRCNN模型提升了绝缘子检测的准确率,通过Resne St101主干网络、拷贝数据增强以及Focal Loss,最终绝缘子数据集的m AP(平均精度均值)达到了68.3%,高于FasterRCNN基线6.8%。
Insulators play an important role in ensuring the safety of power transmission. To improve the efficiency of insulator anomaly detection, an object detection model based on an improved Faster RCNN is proposed and applied to insulator detection. First, the aerial image samples are collected by drones, and the number of samples is amplified by general image augmentation methods such as horizontal flip, rotation transformation and color conversion. Labellmg, a graphical image annotation tool, is used to tagging each image sample to complete the construction of the insulator datasets. The optimal prior anchor frame of insulator datasets is obtained by K-means clustering. In view of the small proportion of broken insulators, this paper proposes a method of copy data augmentation to solve the problem of insulator imbalance. Finally, the influence of backbone network, copy data augmentation and Focal Loss on network performance is compared and analyzed through experiments, which show that the improved Faster RCNN model improves the accuracy of insulator detection. Through the use of Focal Loss, copy data augmentation and ResneSt101 backbone network, the mAP(mean average precision) of the insulator datasets finally reaches 68.3%, 6.8% higher than Faster RCNN baseline.

关键词(KeyWords): 深度学习;绝缘子识别;FasterRCNN;目标检测
deep learning;insulator identification;Faster RCNN;object detection

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211TZ1800LL)

作者(Author): 何文其,李剑,赵文浩
HE Wenqi,LI Jian,ZHAO Wenhao

DOI: 10.19585/j.zjdl.202108006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享