预装式电化学储能电站数字孪生模型建立方法A method for establishing a digital twin model for prefabricated electrochemical energy storage power stations
林达,张雪松,李正阳
LIN Da,ZHANG Xuesong,LI Zhengyang
摘要(Abstract):
目前预装式电化学储能电站为储能工程推广应用的重要方式,针对其全寿命周期数字孪生技术开展研究,提出了一种电化学储能电站电-热-流多物理场数字孪生模型建立方法。首先,通过设计电池标准化测试方案,获取电池的容量/能量、OCV(开路电压)和功率等基础特性以及电池的多物理场耦合规律;然后,通过测试数据辨识电池模型参数,构建老化模型参数数据库;其次,基于ICA(容量增量分析法)揭示电池老化过程,并提取特征映射电池最大可用容量;接着,基于电池多物理场耦合特性,利用实测激光扫描仪、工程图纸、COMSOL多物理场仿真软件建立电池舱的热场、流体场模型。最后,依托浙江省某用户侧预装式储能电站进行技术验证,结果表明,所建立的数字孪生模型可实现电站电-热-流多物理场推演以及状态评估。
Prefabricated electrochemical energy storage stations are crucial for the promotion and application of energy storage projects. To conduct research on digital twin technology throughout the lifecycle, the paper proposes a method for establishing a digital twin model for electrochemical energy storage power stations based on electricthermal-fluid fields. Firstly, standardized testing protocols for batteries are designed to acquire fundamental characteristics such as capacity, energy, open circuit voltage(OCV), and power, as well as the coupling laws of multiple physical fields of batteries. Subsequently, battery model parameters are identified through test data, and an aging model parameter database is constructed. Next, the aging process of batteries is revealed based on incremental capacity analysis(ICA), and the maximum available capacity of the batteries is extracted through feature mapping.Following this, leveraging the coupling characteristics of multiple physical fields of batteries, thermal and fluid field models of battery compartments are established using real-world laser scanners, engineering drawings, and COMSOL Multiphysics software. Finally, technical validation is performed using a user-side prefabricated energy storage station in Zhejiang Province, demonstrating that the established digital twin model enables deduction and state assessment of electric-thermal-fluid fields.
关键词(KeyWords):
预装式储能电站;数字孪生;电-热-流多物理场;电池老化;状态评估
prefabricated energy storage power station;digital twin;electric-thermal-fluid field;battery aging;condition assessment
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS21N006)
作者(Author):
林达,张雪松,李正阳
LIN Da,ZHANG Xuesong,LI Zhengyang
DOI: 10.19585/j.zjdl.202405008
参考文献(References):
- [1]赵显赫,耿光超,林达,等.基于数据驱动的锂离子电池健康状态评估综述[J].浙江电力,2021,40(7):65-73.ZHAO Xianhe,GENG Guangchao,LIN Da,et al.Review of data-driven state of health estimation for lithium-ion battery[J].Zhejiang Electric Power,2021,40(7):65-73.
- [2]姚艳,吴红斌,林达,等.配电网中储能系统的多维价值评估及应用[J].浙江电力,2022,41(12):36-45.YAO Yan,WU Hongbin,LIN Da,et al.Multi-dimensional value assessment and application of energy storage system in distribution networks[J]. Zhejiang Electric Power,2022,41(12):36-45.
- [3]汪湘晋,黄滢,蒋金琦,等.基于层次分析法的储能综合评估及类型选择[J].浙江电力,2022,41(11):1-8.WANG Xiangjin,HUANG Ying,JIANG Jinqi,et al.Comprehensive evaluation and type selection of energy storage based on analytic hierarchy process[J]. Zhejiang Electric Power,2022,41(11):1-8.
- [4]黄碧斌,胡静,蒋莉萍,等.中国电网侧储能在典型场景下的应用价值评估[J].中国电力,2021,54(7):158-165.HUANG Bibin,HU Jing,JIANG Liping,et al. Application value assessment of grid side energy storage under typical scenarios in China[J].Electric Power,2021,54(7):158-165.
- [5]吴冲,陆永灿,杨波,等.面向10 kV“煤改电”区域配电网供电质量提升的储能优化配置技术[J].电力电容器与无功补偿,2022,43(6):138-145.WU Chong,LU Yongcan,YANG Bo,et al.Optimal energy storage allocation technology of energy storage for improving power supply quality of 10 kV coal-to-electricity regional distribution network[J].Power Capacitor&Reactive Power Compensation,2022,43(6):138-145.
- [6]杨瑞琳,李可然,刘俊勇,等.考虑储能参与备用配置的园区综合能源系统日前经济调度模型[J].电力建设,2022,43(12):103-111.YANG Ruilin,LI Keran,LIU Junyong,et al. Day-ahead economic dispatch model of park integrated energy system considering reserve allocation of energy storage[J].Electric Power Construction,2022,43(12):103-111.
- [7]罗博航,沈翔宇.基于区块链的共享储能联合市场竞价模型与交易机制[J].电测与仪表,2022,59(8):30-38.Luo Bohang,Shen Xiangyu. Bidding model and trading mechanism of shared energy storage joint marketbased on blockchain[J].Electrical Measurement&Instrumentation,2022,59(8):30-38.
- [8]李建林,丁子洋,游洪灏,等.构网型储能支撑新型电力系统稳定运行研究[J].高压电器,2023,59(7):1-11.LI Jianlin,DING Ziyang,YOU Honghao,et al.Research on stable operation of new power system supported by grid-forming energy storage system[J].High Voltage Apparatus,2023,59(7):1-11.
- [9]李明,焦春雷,李晓龙,等.储能安全标准研究及储能在构网型新场景中的应用[J].高压电器,2023,59(7):20-29.LI Ming,JIAO Chunlei,LI Xiaolong,et al. Research on energy storage safety standard and application of energy storage system in grid-forming scenario[J].High Voltage Apparatus,2023,59(7):20-29.
- [10]陈翌,白云飞,何瑛.数据驱动的锂电池健康状态估算方法比较[J].储能科学与技术,2019,8(6):1204-1210.CHEN Yi,BAI Yunfei,HE Ying. Comparison of datadriven lithium battery state of health estimation methods[J].Energy Storage Science and Technology,2019,8(6):1204-1210.
- [11]彭鹏,林达,汪湘晋,等.基于局部异常因子的锂离子电池储能系统故障诊断[J].浙江电力,2023,42(5):11-17.PENG Peng,LIN Da,WANG Xiangjin,et al.Fault diagnosis of lithium-ion battery energy storage systems based on local outlier factor[J].Zhejiang Electric Power,2023,42(5):11-17.
- [12]刘子豪,张雪松,林达,等.基于扩展卡尔曼滤波的储能电池能量和功率状态联合估计方法[J].储能科学与技术,2023,12(3):913-922.LIU Zihao,ZHANG Xuesong,LIN Da,et al.Joint energy and power state estimation method for energy storage battery based on extended Kalman filter[J].Energy Storage Science and Technology,2023,12(3):913-922.
- [13]刘新天,何耀,曾国建,等.考虑温度影响的锂电池功率状态估计[J].电工技术学报,2016,31(13):155-163.LIU Xintian,HE Yao,ZENG Guojian,et al. State-ofpower estimation for Li-ion battery considering the effect of temperature[J].Transactions of China Electrotechnical Society,2016,31(13):155-163.
- [14]杨凯杰,裴后举,朱信龙,等.某型集装箱储能电池模块的热设计研究及优化[J].储能科学与技术,2020,9(6):1858-1863.YANG Kaijie,PEI Houju,ZHU Xinlong,et al.Research and optimization of thermal design of a container energy storage battery pack[J].Energy Storage Science and Technology,2020,9(6):1858-1863.
- [15] VANDERHORN E,MAHADEVAN S. Digital Twin:generalization,characterization and implementation[J].Decision Support Systems,2021,145:113524.
- [16] LI C Z,MAHADEVAN S,LING Y,et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J].AIAA Journal,2017,55(3):930-941.
- [17] BAUMANN M,ROHR S,LIENKAMP M. Cloudconnected battery management for decision making on second-life of electric vehicle batteries[C]//2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies(EVER).Monte Carlo,Monaco.IEEE,2018:1-6.
- [18] QU X,SONG Y,LIU D,et al.Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model[J]. Microelectronics Reliability,2020,114:113857.
- [19] LI W H,RENTEMEISTER M,BADEDA J,et al.Digital twin for battery systems:cloud battery management system with online state-of-charge and state-of-health estimation[J].Journal of Energy Storage,2020,30:101557.
- [20] MA S C,SUN B X,SU X J,et al.Sensitivity analysis of electrochemical model parameters for lithium-ion batteries on terminal voltages and anode lithium plating criterion[J].Journal of Energy Storage,2023,71:108127.