基于多源信息的短期负荷混合预测模型应用研究Study on Application of Short-term Hybrid Load Forecasting Model Based on Multi-source Information
应张驰,陈淑萍,卢旭航
YING Zhangchi,CHEN Shuping,LU Xuhang
摘要(Abstract):
针对单一负荷预测模型在实时预测中的局限性,建立了以ARIMA(自回归移动平均)模型和人工神经网络模型为基础的混合预测模型。除历史负荷数据信息以外,引入气象数据、用户特征、日期信息等多源信息,探究各类特征值选择对预测结果的影响。某市工业用户的实际应用效果表明,综合ARIMA模型对时间序列趋势的拟合能力和人工神经网络对多源信息的捕捉能力后,建立的混合预测模型具有较好的预测效果。
Aiming at the limitation of single load forecasting model in real-time forecasting, this paper establishes a hybrid forecasting model based on ARIMA(autoregressive integrated moving average) model and artificial neural network model. In addition to historical load data information, it introduces multi-source information such as meteorological data, user features and date information to explore the impact of various feature selections on forecasting results. The application of the forecasting model in an industrial user shows that the ARIMA model that integrates the fitting capacity of time series trend and the multi-source information capture capacity of the artificial neural network, the established hybrid forecasting model turns out to be effective.
关键词(KeyWords):
负荷预测;ARIMA模型;人工神经网络;混合预测
load forecasting;ARIMA model;artificial neural network;hybrid forecasting
基金项目(Foundation):
作者(Author):
应张驰,陈淑萍,卢旭航
YING Zhangchi,CHEN Shuping,LU Xuhang
DOI: 10.19585/j.zjdl.201909017
参考文献(References):
- [1]冯小宁.供电可靠性经典预测方法研究[J].科技信息,2011(25):339.
- [2]张忠平.指数平滑法[M].北京:中国统计出版社,1996.
- [3]段玉波,曲薇薇,周群,等.应用递归人工神经网络预测电力短期负荷[J].佳木斯大学学报,2010,28(3):372-375.
- [4]张冰玉.基于数据挖掘技术的短期电力负荷预测[J].电力大数据,2017,20(10):18-21.
- [5]侯贺飞.刘俊勇.最小二乘支持向量机短期负荷预测研究[J].四川电力技术,2009,32(S1):11-15.
- [6]沈百新.利用专家系统预测地区用电负荷[J].电力需求侧管理,2005,7(2):49-50.
- [7]钟全辉,张以全,肖少华,等.基于灰色预测理论的区域电量概率预测方法及其应用[J].浙江电力,2018,37(1):19-22.
- [8]JONGHE C D,HOBBS B F,BELMANS R.Optimal gener ation mix with short-term demand response and wind penetration[J].IEEE Transactions on Power Systems,2012,27(2):830-839.
- [9]SANYAL J,NEW J.Simulation and big data challenges in tuning building energy models[C]//Modeling and Simulation of Cyber-Physical Energy Systems,May 20th 2013,Berrelay,CA,USA.New York:IEEE,2013:1-6.
- [10]徐俊,徐文辉,曾鑫,等.基于大数据挖掘电量预测方法的创新及应用[J].电力大数据,2018,21(10):63-67.
- [11]张利.基于时间序列ARIMA模型的分析预测算法研究及系统实现[D].镇江:江苏大学,2008.
- [12]侯璐.基于ARIMA模型的石油价格短期分析预测[D].广州:暨南大学,2009.
- [13]熊志斌.ARIMA融合神经网络的人民币汇率预测模型研究[J].数量经济技术经济研究,2011(6):64-76.
- [14]范金骥.基于ARMA与ANN模型组合交叉方法的电网日负荷预测[J].浙江电力,2018,37(8):35-41.
- [15]蔡钊,马林华,宋博,等.基于ARIMA-ANN预测模型的能量感知路由算法[J].计算机工程与科学,2015,37(6):1064-1070.
- [16]王继业,季知祥,史梦洁,等.智能配用电大数据需求分析与应用研究[J].中国电机工程学报,2015,35(8):1829-1836.
- [17]黄宇腾,韩翊,赖尚栋.深度神经网络在配电网公变短期负荷预测中的应用研究[J].浙江电力,2018,37(5):1-6.
- [18]孙毅,顾玮,李彬,等.面向售电侧改革的用户分层聚类与套餐推荐方法[J].电网技术,2018,42(2):447-454.
- [19]张炀,汪洋.基于PAM和ELM的电力短期负荷预测相似日选取算法[J].电力大数据.2017.20(12):84.