不同风向条件下输电塔风致响应数值模拟Numerical Simulation of Wind Induced Response of Transmission Tower in Different Wind Directions
吕洪坤,刘孟龙,池伟,汪明军,罗坤,应明良,樊建人
LYU Hongkun,LIU Menglong,CHI Wei,WANG Mingjun,LUO Kun,YING Mingliang,FAN Jianren
摘要(Abstract):
以温州某输电线路为研究对象,根据实际参数分别建立了输电塔与塔线耦合体系有限元模型,研究了不同风向作用下结构风致响应特征,对比分析了塔线耦合作用和塔体两侧档距对各风向作用下输电塔风致响应的影响。结果表明:风向影响塔体各主材轴力响应,其中顺风向最下游主材有着最大的轴力,应在设计时重点考虑;塔线耦合作用直接影响了塔体响应的最不利风向,且大档距使得最不利风向更加接近横线向;脉动风对塔体响应的动力放大效应在不同风向条件下有显著区别,而塔线耦合作用加大了风向对风振放大效应的影响;导线抑制了塔体响应的动力响应,并且导线档距越大,脉动风对响应的动力放大效应越弱。
Based on a transmission line in Wenzhou as the research object, finite element models of transmission towers and tower-line coupling system are built based on actual parameter to study the wind-induced response characteristics of transmission tower under in different wind directions, and the effect of transmission line and span length on wind-induced response of tower in different wind directions is analyzed. The results show that wind direction affects the axial force of main materials, and the most downstream main material has the largest axial force, which should be focused on in practical design; the coupling effect of tower-line directly affects the worst wind direction of wind-induced response, and the large span makes the worst wind direction close to transverse line direction; the dynamic amplification effect of turbulent wind on tower response is obviously different in different wind directions, and the coupling effect of tower-line increases wind direction impact on wind-induced vibration amplification effect; the conductor inhibits the dynamic response of the tower body, and the larger the span is, the weaker the dynamic amplification effect of turbulent wind on the response becomes.
关键词(KeyWords):
有限元分析;塔线体系;风向;档距;风振系数
finite element analysis;tower-line system;wind direction;span;wind-induced vibration coefficient
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211DS17002U)
作者(Author):
吕洪坤,刘孟龙,池伟,汪明军,罗坤,应明良,樊建人
LYU Hongkun,LIU Menglong,CHI Wei,WANG Mingjun,LUO Kun,YING Mingliang,FAN Jianren
DOI: 10.19585/j.zjdl.202102002
参考文献(References):
- [1]王东.角钢输电塔风荷载作用模式研究[D].杭州:浙江大学,2013.
- [2]邢月龙.500 k V同塔多回输电塔的风荷载研究[D].杭州:浙江大学,2012.
- [3]谢华平,何敏娟.钢管输电塔平均风荷载数值模拟[J].结构工程师,2009,25(2):104-107.
- [4]党会学,赵均海,张宏杰,等.三角形格构式塔身体型系数及屏蔽特性研究[J].计算力学学报,2016,33(3):362-368.
- [5]ALLEGRINI J,MAESSCHALCK J,ALESSI G,et al.Porous and geometry-resolved CFD modelling of a lattice transmission tower validated by drag force and flow field measurements[J].Engineering Structures,2018,168:462-472.
- [6]潘峰,姚耀明,胡文侃,等.全方位角度风作用下铁塔风荷载分配系数特性研究[J].中国电力,2016,49(7):32-38.
- [7]LIANG S G,ZOU L H,WANG D H,et al.Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system[J].Engineering Structures,2015,85:63-72.
- [8]DENG H Z,XU H J,DUAN C Y,et al.Experimental and numerical study on the responses of a transmission tower to skew incident winds[J].Journal of Wind Engineering and Industrial Aerodynamics,2016,157:171-188.
- [9]付兴.风雨致输电塔线体系动力反应及倒塌分析[D].大连:大连理工大学,2016.
- [10]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:467-471.
- [11]王骞.风荷载下大跨越输电塔-线体系振动控制分析[D].济南:山东大学,2014.
- [12]中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
- [13]International Electrotechnical Commission.Design criteria of overhead transmission lines:IEC 60826—2003[S].Switzerland:International Electro-technical Commission,2003.
- [14]CENELEC.Overhead electrical lines exceeding AC 45 kV(Part 1):BS EN 50341-1:2012[S].Brussels:Cenelec,2012.
- [15]邓洪洲,段成荫,徐海江.良态风场与台风风场下输电塔线体系气弹模型风洞试验[J].振动与冲击,2018,37(8):257-262.
- [16]张庆华.新型窄基输电塔抗风优化设计研究[M].北京:中国水利水电出版社,2016:108-111.
- 有限元分析
- 塔线体系
- 风向
- 档距
- 风振系数
finite element analysis - tower-line system
- wind direction
- span
- wind-induced vibration coefficient