新能源电源送出线路不同类型距离保护动作性能比较
A comparison of the operational performance of different types of distance protection in new energy power transmission lines
王兴国,于溯
WANG Xingguo,YU Su
摘要(Abstract):
新能源交流送出线路故障后,新能源电源的故障响应特性会影响距离保护的动作行为。为此,结合新能源电源控制策略,分析故障前后新能源电源阻抗、系统功角及故障电气量的变化,比较相极化电压距离保护、正序极化电压距离保护、突变量距离保护3种类型距离保护的动作性能。由于在线路出口故障时相电压为零,相极化电压距离保护存在动作死区;由于故障后正序电压相位受控制影响发生偏移,正序极化电压相间距离保护存在线路区内故障时拒动、区外故障时误动的风险;对于突变量距离保护,故障后补偿电压相位受控制影响发生偏移,导致保护可能发生拒动或误动。利用RTDS(实时数字仿真系统)建立新能源经交流线路送出的系统模型,仿真分析线路不同类型故障情况下3种距离保护的动作性能,仿真结果与理论分析结论一致。
Following a fault on an AC transmission line for new energy, the fault response of the new energy power supply can influence the operation of distance protection. Therefore, leveraging the control strategy of the new energy power supply, this study delves into alternations in impedance, system power angle, and faulty electrical quantity prior to and post-fault. It also contrasts the performance of three distance protection mechanisms: phase polarization voltage, positive-sequence polarization voltage, and sudden magnitude variation. Given that the phase voltage drops to zero when faults occur at the line outlet, a non-responsive zone is inherent in the action area of phase polarization voltage distance protection mechanism. After a fault, the phase of the positive sequence voltage is influenced by control and shifts. This presents risks of refusal to trip during an internal fault and false tripping during an external fault for positive-sequence polarization voltage phase-sequence distance protection mechanism. Regarding the sudden magnitude variation distance protection mechanism, a fault can compel a shift in the compensated voltage phase due to control influences, which could result in protection refusal or false tripping. Using the real-time digital simulator(RTDS), a system model demonstrating the transmission of new energy via AC lines is established. A simulation analysis of the performance of the three mechanisms is performed. The findings from the simulation align seamlessly with the theoretical scrutiny.
关键词(KeyWords):
新能源控制响应;输电线路;距离保护;电源等值阻抗;系统功角;极化电压
new energy control response;transmission line;distance protection;equivalent impedance of power supply;system power angle;polarization voltage
基金项目(Foundation): 国家自然科学基金资助项目(U2166205)
作者(Author):
王兴国,于溯
WANG Xingguo,YU Su
DOI: 10.19585/j.zjdl.202407003
参考文献(References):
- [1]国家质量监督检验检疫总局,中国国家标准化管理委员会.风电场接入电力系统技术规定:GB/T 19963—2011[S].北京:中国标准出版社,2012.
- [2]孙华东,许涛,郭强,等.英国“8·9”大停电事故分析及对中国电网的启示[J].中国电机工程学报,2019,39(21):6183-6192.SUN Huadong,XU Tao,GUO Qiang,et al.Analysis on blackout in great Britain power grid on August 9th, 2019and its enlightenment to power grid in China[J].Proceedings of the CSEE,2019,39(21):6183-6192.
- [3]李彦宾,贾科,毕天姝,等.逆变型电源对距离保护的影响机理分析[J].电力系统保护与控制,2018,46(16):54-59.LI Yanbin,JIA Ke,BI Tianshu,et al.Impact of inverterinterfaced renewable energy generators on distance protection[J]. Power System Protection and Control,2018,46(16):54-59.
- [4]郑黎明,贾科,毕天姝,等.海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J].电力系统保护与控制,2021,49(20):20-32.ZHENG Liming,JIA Ke,BI Tianshu,et al.AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J].Power System Protection and Control,2021,49(20):20-32.
- [5]周泽昕,于溯,李勇,等.新能源经柔直送出场景下功角变化导致比相式距离保护不正确动作机制分析[J].中国电机工程学报,2023,43(5):1730-1739.ZHOU Zexin,YU Su,LI Yong,et al.Analysis of the incorrect operation mechanism of the phase comparison distance protection caused by the change of power angle in the scenario of MMC-HVDC connected renewable power system[J].Proceedings of the CSEE,2023,43(5):1730-1739.
- [6]贾科,杨哲,赵其娟,等.适用于新能源场站送出线路的高频突变量距离保护[J].电网技术,2019,43(9):3271-3280.JIA Ke,YANG Zhe,ZHAO Qijuan,et al.High-frequency fault component based distance protection for transmission lines connected to renewable energy power plants[J].Power System Technology,2019,43(9):3271-3280.
- [7]吴宇奇,黎钊,肖澍昱,等.超高压输电线路单端暂态量欠范围式保护方案[J].中国电机工程学报,2022,42(增刊1):70-81.WU Yuqi,LI Zhao,XIAO Shuyu,et al.Under-range protection scheme of single-ended transient for EHV transmission lines[J].Proceedings of the CSEE,2022,42(S1):70-81.
- [8]张延林,马磊,王杰,等.新能源电源接入风电场的距离保护及差动保护评估[J].光源与照明,2022(3):210-212.ZHANG Yanlin,MA Lei,WANG Jie,et al.Distance protection and differential protection evaluation of renewable energy source connected to wind farm[J].Lamps&Lighting,2022(3):210-212.
- [9]黄涛,陆于平,凌启程,等.撬棒电路对风电场侧联络线距离保护的影响及对策[J].电力系统自动化,2013,37(17):30-36.HUANG Tao,LU Yuping,LING Qicheng,et al.Impact of crowbar on wind farm side interconnection line distance protection and mitigation method[J].Automation of Electric Power Systems,2013,37(17):30-36.
- [10] JIA Ke,CHEN Rui,XUAN Zhenwen,et al.Fault characteristics and protection adaptability analysis in VSCHVDC-connected offshore wind farm integration system[J]. IET Renewable Power Generation,2018,12(13):1547-1554.
- [11]张保会,张金华,原博,等.风电接入对继电保护的影响(六):风电场送出线路距离保护影响分析[J].电力自动化设备,2013,33(6):1-6.ZHANG Baohui,ZHANG Jinhua,YUAN Bo,et al. Impact of wind farm integration on relay protection(6):analysis of distance protection for wind farm outgoing transmission line[J].Electric Power Automation Equipment,2013,33(6):1-6.
- [12]张健,黄少锋,李轶凡.统一潮流控制器接入对距离保护的影响及对策[J].电测与仪表,2022,59(5):187-192.Zhang Jian,Huang Shaofeng,Li Yifan.Analysis of the influence of UPFC on distance protection and the correspondingimproved scheme[J]. Electrical Measurement&Instrumentation,2022,59(5):187-192.
- [13]桂小智,宋国兵,常鹏,等.适用于新能源并网系统的距离保护方法[J].电力工程技术,2023,42(3):250-257.GUI Xiaozhi,SONG Guobing,CHANG Peng,et al.Distance protection method applicable to renewable energy grid-connected systems[J]. Electric Power Engineering Technology,2023,42(3):250-257.
- [14]曾翔,文明浩,钱堃,等.逆变型分布式电源接入对接地距离保护的影响与对策[J].智慧电力,2023,51(1):46-53.ZENG Xiang,WEN Minghao,QIAN Kun,et al.Influence of inverter-interfaced distributed generation integration on grounding distance protection and its strategies[J].Smart Power,2023,51(1):46-53.
- [15]李宽,刘震,牛健飞,等.交流继电保护动作性能在多馈入直流系统中适应性仿真分析[J].山东电力技术,2022,49(2):23-28.LI Kuan,LIU Zhen,NIU Jianfei,et al. Adaptive simulation analysis of AC relay protection performance in multi?infeed DC system[J].Shandong Electric Power,2022,49(2):23-28.
- [16] PRADHAN A K,JOOS G. Adaptive distance relay setting for lines connecting wind farms[J]. IEEE Transactions on Energy Conversion,2007,22(1):206-213.
- [17]季亮,张林楠,姜恩宇,等.提升距离保护适应性的新能源主动故障控制研究[J].太阳能学报,2022,43(7):22-29.JI Liang,ZHANG Linnan,JIANG Enyu,et al. Research on renewable energy active fault control to improve adaptability of distance protection[J].Acta Energiae Solaris Sinica,2022,43(7):22-29.
- [18]刘海金,李斌,温伟杰,等.柔性直流系统的线路保护关键技术与展望[J].电网技术,2021,45(9):3463-3480.LIU Haijin,LI Bin,WEN Weijie,et al.Review and prospect on transmission line protection in flexible DC system[J].Power System Technology,2021,45(9):3463-3480.
- [19] HOOSHYAR A,AZZOUZ M A,EL-SAADANY E F.Distance protection of lines emanating from full-scale converter-interfaced renewable energy power plants-part I:problem statement[J].IEEE Transactions on Power Delivery,2015,30(4):1770-1780.