浙江电力

2025, v.44;No.349(05) 53-65

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于ISSA-MSVR的风机并网系统暂态稳定评估
Transient stability assessment of wind turbine grid-connected systems using ISSA-MSVR

范宏,徐勇杰,徐涛
FAN Hong,XU Yongjie,XU Tao

摘要(Abstract):

为解决风电并网后系统暂态稳定分析不准确的问题,提出一种基于ISSA(改进麻雀搜索算法)优化的MSVR(多输出支持向量回归)方法。首先,建立直驱风机并网后的能量函数,针对风机并网系统,提出利用改进的DQN(深度Q网络)算法构建出稳定性可解释的能量函数,并通过BCU(基于稳定域边界的主导不稳定平衡点)方法求解系统的不稳定平衡点,从而得到预测模型的训练集与测试集。接着,针对SSA(改进麻雀搜索算法)易陷入局部最优等缺点,引入反向学习、分段权重以及柯西变异方法对SSA进行改进,并利用ISSA对MSVR中的惩罚因子和核函数宽度两个参数进行最优化组合,通过改进的IEEE 39节点系统验证了预测方法的有效性。实验结果表明,ISSA优化后的MSVR方法相较于其他典型人工智能方法而言,预测误差更小,训练所耗时间相对较少,能够对风机并网系统的不稳定平衡点进行有效预测。
To address the issue of inaccurate transient stability analysis in power systems after wind farm integration, this paper proposes a method combining improved sparrow search algorithm(ISSA)-optimized multi-output support vector regression(MSVR). First, an energy function is established for direct-drive wind turbines integrated into the grid. For wind turbine grid-connected systems, an interpretable stability energy function is constructed using an improved Deep Q-Network(DQN) algorithm. The unstable equilibrium points(UEPs) of the system are then determined via the boundary of stability region based controlling UEP method(BCU), generating the training and testing datasets for the prediction model. Next, to overcome the limitations of the SSA algorithm, such as susceptibility to local optima, inverse learning, piecewise weighting, and Cauchy mutation are introduced to enhance SSA.The ISSA is then employed to optimally tune the penalty factor and kernel width in MSVR. The proposed method is validated on a modified IEEE 39-bus system. Experimental results demonstrate that the ISSA-MSVR approach achieves smaller prediction errors and reduced training time compared to other state-of-the-art AI methods, effectively predicting the UEPs in wind farm-integrated systems.

关键词(KeyWords): 直驱风机并网;虚拟同步机控制;BCU;改进麻雀搜索算法;多输出支持向量回归;不稳定平衡点预测
direct-drive wind turbine integration;VSG control;BCU;ISSA;MSVR;UPE prediction

Abstract:

Keywords:

基金项目(Foundation): 国家重点研发计划(2022YFA10046000)

作者(Author): 范宏,徐勇杰,徐涛
FAN Hong,XU Yongjie,XU Tao

DOI: 10.19585/j.zjdl.202505006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享