分布式灵活性资源的动态聚合调控与协同效益分配研究综述Review on dynamic aggregation control and collaborative benefit allocation of distributed flexibility resources
范宏,盛哲祺,张树卿
FAN Hong,SHENG Zheqi,ZHANG Shuqing
摘要(Abstract):
新型电力系统源荷不确定性与弱可控性导致电力系统灵活运行面临巨大挑战,需要大量异构的分布式灵活性资源参与电网调度并提供相关辅助服务。为此,介绍了分布式灵活性资源的概念、特征及其类型,分析归纳不同发展阶段下新型电力系统的灵活性需求,介绍分布式灵活性资源动态聚合调控和协同效益分配的研究现状,总结其中的关键技术及其特点。最后,对基于智能化方法的源荷不确定性建模技术、考虑多能耦合的动态聚合调控技术、考虑不确定性的集群运行边界构建技术以及考虑不同市场的效益分配技术的未来研究方向进行了展望。
The uncertainty and limited controllability of source-load dynamics in modern power systems present substantial challenges to their flexible operation, requiring extensive participation of heterogeneous distributed flexibility resources(DFRs) in system dispatch and ancillary service provision. This paper first introduces the concept, characteristics, and classifications of DFRs, systematically analyzes the flexibility requirements of modern power systems across different development stages, and reviews current research on dynamic aggregation control and collaborative benefit allocation of DFRs. Key technologies and their features in these domains are summarized. Finally, future research directions are prospected for intelligent modeling techniques for source-load uncertainty, dynamic aggregation control techniques considering multi-energy coupling, operational envelope characterization considering uncertainties, and market-oriented benefit allocation mechanisms.
关键词(KeyWords):
新型电力系统;分布式灵活性资源;动态聚合调控;协同效益分配
modern power system;DFRs;dynamic aggregation control;collaborative benefit allocation
基金项目(Foundation): 国家自然科学基金(U22B6008)
作者(Author):
范宏,盛哲祺,张树卿
FAN Hong,SHENG Zheqi,ZHANG Shuqing
DOI: 10.19585/j.zjdl.202509004
参考文献(References):
- [1]卫璇,潘昭光,王彬,等.云管边端架构下虚拟电厂资源集群与协同调控研究综述及展望[J].全球能源互联网,2020,3(6):539-551.WEI Xuan,PAN Zhaoguang,WANG Bin,et al. Review on virtual power plant resource aggregation and collaborative regulation using cloud-tube-edge-end architecture[J].Journal of Global Energy Interconnection,2020,3(6):539-551.
- [2]鞠立伟,吕硕硕,李鹏.新型电力系统需求侧灵活性资源时空协同优化与动态均衡机制研究综述[J].电力建设,2024,45(9):142-163.JU Liwei,LüShuoshuo,LI Peng. Review of novel demand-side flexibility resource spatio-temporal cooptimization and dynamic equilibrium mechanism of power systems[J]. Electric Power Construction,2024,45(9):142-163.
- [3]袁家海,张健,孟之绪,等.电力系统灵活性提升:技术路径经济性与政策建议[R].北京:华北电力大学,2022.YUAN Jiahai,ZHANG Jian,Mengzhixu,et al.Improving power system flexibility:technical pathways,economic analysis,and policy recommendations[R].Beijiang:North China Electric Power University,2022.
- [4]邱玥,陆帅,陆海,等.综合能源系统灵活性:基本内涵、数学模型与研究框架[J].电力系统自动化,2022,46(17):16-43.QIU Yue,LU Shuai,LU Hai,et al. Flexibility of integrated energy system:basic connotation,mathematical model and research framework[J].Automation of Electric Power Systems,2022,46(17):16-43.
- [5]王思远,吴文传.灵活性资源聚合参考模型与量化指标体系[J].电力系统自动化,2024,48(3):1-9.WANG Siyuan,WU Wenchuan. Aggregation reference model and quantitative metric system of flexible energy resources[J].Automation of Electric Power Systems,2024,48(3):1-9.
- [6]吴珊,边晓燕,张菁娴,等.面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J].电工技术学报,2023,38(6):1662-1677.WU Shan,BIAN Xiaoyan,ZHANG Jingxian,et al.A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society,2023,38(6):1662-1677.
- [7] DEGEFA M Z,SPERSTAD I B,S?LE H.Comprehensive classifications and characterizations of power system flexibility resources[J].Electric Power Systems Research,2021,194:107022.
- [8] SINDHU S,NEHRA V,LUTHRA S.Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach[J].Renewable and Sustainable Energy Reviews,2016,62:70-88.
- [9]程杉,张芮嘉,钟仕凌,等.计及需求响应柔性调节的可再生能源优化配置[J].电力系统及其自动化学报,2023,35(2):94-102.CHENG Shan,ZHANG Ruijia,ZHONG Shiling,et al.Optimal allocation of distributed renewable generations considering flexible regulation of demand-side response[J].Proceedings of the CSU-EPSA,2023,35(2):94-102.
- [10] DING K,ZHANG L,YANG C H,et al.The optimization analysis of multi-type demand-side flexibility resources for renewable energy accommodation in electrical power systems[J].Frontiers in Energy Research,2023,11:1333872.
- [11]余泳杰典型应用场景下电力系统新型灵活性资源价值综合评估[D].北京:华北电力大学,2022.YU Yongjie.Comprehensive evaluation of new flexible resource value of power system in typical application scenarios[D]. Beijing:North China Electric Power University,2022.
- [12]高铭泽.考虑需求响应的工业负荷灵活性建模与可调潜力评估[D].沈阳:沈阳工业大学,2024.GAO Mingze. Flexible modeling and adjustable potential evaluation of industrial load considering demand response[D].Shenyang:Shenyang University of Technology,2024.
- [13]李建林,姜冶蓉,马速良,等.新型电力系统下分布式储能应用场景与优化配置[J].高电压技术,2024,50(1):30-41.LI Jianlin,JIANG Yerong,MA Suliang,et al.Application scenarios and optimal configuration of distributed energy storage under the new power system[J].High Voltage Engineering,2024,50(1):30-41.
- [14]国家发展改革委,国家能源局,国家数据局.加快构建新型电力系统行动方案(2024—2027年)[J].大众用电,2024,39(9):7-9.National Development and Reform Commission,National Energy Bureau,National Data Bureau.Action program for accelerating the construction of a new electricity system(2024—2027)[J].Popular Electricity,2024,39(9):7-9.
- [15]黄鹏翔,周云海,徐飞,等.基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J].中国电力,2020,53(11):78-88.HUANG Pengxiang,ZHOU Yunhai,XU Fei,et al.Source-load-storage coordinated rolling dispatch for wind power integrated power system based on flexibility margin[J].Electric Power,2020,53(11):78-88.
- [16]施涛,朱凌志,于若英.电力系统灵活性评价研究综述[J].电力系统保护与控制,2016,44(5):146-154.SHI Tao,ZHU Lingzhi,YU Ruoying.Overview on power system flexibility evaluation[J].Power System Protection and Control,2016,44(5):146-154.
- [17]李玲芳,陈占鹏,胡炎,等.基于灵活性和经济性的可再生能源电力系统扩展规划[J].上海交通大学学报,2021,55(7):791-801.LI Lingfang,CHEN Zhanpeng,HU Yan,et al.Expansion planning of renewable energy power system considering flexibility and economy[J].Journal of Shanghai Jiao Tong University,2021,55(7):791-801.
- [18]韩凝晖,周颖,石坤,等.面向新型电力系统电量平衡的可调节负荷互动潜力分析[J].电力需求侧管理,2022,24(6):70-76.HAN Ninghui,ZHOU Ying,SHI Kun,et al. Adjustable load interaction potential oriented to power balance of new power system[J]. Power Demand Side Management,2022,24(6):70-76.
- [19] YI Z K,XU Y L,WU C Y.Improving operational flexibility of combined heat and power system through numerous thermal controllable residents aggregation[J].International Journal of Electrical Power&Energy Systems,2021,130:106841.
- [20]徐潇源,王晗,严正,等.能源转型背景下电力系统不确定性及应对方法综述[J].电力系统自动化,2021,45(16):2-13.XU Xiaoyuan,WANG Han,YAN Zheng,et al.Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems,2021,45(16):2-13.
- [21] WALKER,HARREMO?S,ROTMANS,et al.Defining uncertainty:a conceptual basis for uncertainty management in model-based decision support[J]. Integrated Assessment,2003,4(1):5-17.
- [22]林超凡,别朝红.新型电力系统不确定性静态建模及量化分析方法评述[J].电力系统自动化,2024,48(19):14-27.LIN Chaofan,BIE Zhaohong. Review of static modeling and quantitative analysis methods for uncertainties of new power systems[J]. Automation of Electric Power Systems,2024,48(19):14-27.
- [23]汪鸿,朱正甲,陈建华,等.基于人工智能技术与物理方法结合的新能源功率预测研究[J].高电压技术,2023,49(增刊1):111-117.WANG Hong,ZHU Zhengjia,CHEN Jianhua,et al.Research on new energy power prediction based on artificial intelligence technology and physical method[J].High Voltage Engineering,2023,49(S1):111-117.
- [24]白凯峰,顾洁,彭虹桥,等.融合风光出力场景生成的多能互补微网系统优化配置[J].电力系统自动化,2018,42(15):133-141.BAI Kaifeng,GU Jie,PENG Hongqiao,et al.Optimal allocation for multi-energy complementary microgrid based on scenario generation of wind power and photovoltaic output[J]. Automation of Electric Power Systems,2018,42(15):133-141.
- [25] SUN L,ZHANG Q,ZHANG N,et al.A time-sequence simulation method for power unit’s monthly energy-trade scheduling with multiple energy sources[J]. Processes,2019,7(10):771.
- [26]林顺富,刘持涛,李东东,等.考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J].中国电机工程学报,2020,40(5):1409-1421.LIN Shunfu,LIU Chitao,LI Dongdong,et al.Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE,2020,40(5):1409-1421.
- [27]高洪超,陈启鑫,雷振,等.考虑事件数据的产消者负荷预测方法及极端误差抑制策略[J].电力系统自动化,2023,47(13):47-55.GAO Hongchao,CHEN Qixin,LEI Zhen,et al.Load forecasting method and extreme error suppression strategy for prosumers considering event data[J].Automation of Electric Power Systems,2023,47(13):47-55.
- [28]孟凡斌,南钰,武亚非,等.基于谱归一化生成对抗网络与谱聚类的典型风力发电场景生成[J].浙江电力,2024,43(12):86-94.MENG Fanbin,NAN Yu,WU Yafei,et al.Generation of typical wind power scenarios based on spectral normalization generative adversarial networks and spectral clustering[J].Zhejiang Electric Power,2024,43(12):86-94.
- [29]黄健,陈建红,何剑杰,等.基于GCN-LSTM的电动汽车负荷预测方法[J].浙江电力,2024,43(12):59-67.HUANG Jian,CHEN Jianhong,HE Jianjie,et al.An EV load forecasting method for using GCN-LSTM[J].Zhejiang Electric Power,2024,43(12):59-67.
- [30]赵紫昱,陈渊睿,陈霆威,等.基于时空图注意力网络的超短期区域负荷预测[J].电力系统自动化,2024,48(12):147-155.ZHAO Ziyu,CHEN Yuanrui,CHEN Tingwei,et al.Ultrashort-term regional load forecasting based on spatiotemporal graph attention network[J].Automation of Electric Power Systems,2024,48(12):147-155.
- [31] RIAZ S,MANCARELLA P.Modelling and characterisation of flexibility from distributed energy resources[J].IEEE Transactions on Power Systems,2022,37(1):38-50.
- [32] SIMOGLOU C K,BISKAS P N.Capacity mechanisms in Europe and the US:a comparative analysis and a real-life application for Greece[J].Energies,2023,16(2):982.
- [33]王鹏,韩志辉.电力辅助服务建设的渐进模式:中国电力辅助服务市场化二十年的历史经验[J].中国电力企业管理,2018(28):12-15.WANG Peng,HAN Zhihui. Gradual mode of electric power auxiliary service construction:historical experience of China electric power auxiliary service marketization for20 years[J]. China Power Enterprise Management,2018(28):12-15.
- [34] NOTO G,HAGENMEYER V,APPINO R R,et al.Determination of feasible power variability ranges in active distribution networks with uncertain generation and demand[C]//2019 IEEE Milan PowerTech. June 23-27,2019.Milan,Italy.IEEE,2019:1-6.
- [35] WANG H,RIAZ S,MANCARELLA P. Integrated techno-economic modeling,flexibility analysis,and business case assessment of an urban virtual power plant with multi-market co-optimization[J]. Applied Energy,2020,259:114142.
- [36] JASEENA K U,KOVOOR B C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks[J].Energy Conversion and Management,2021,234:113944.
- [37] FU Y,HAO S Q,ZHANG J H,et al. Optimal cluster scheduling of active-reactive power for distribution network considering aggregated flexibility of heterogeneous building-integrated DERs[J]. Buildings,2023,13(11):2854.
- [38]王秋杰,刘观辉,谭洪,等.计及车主充能意愿差异性的氢电混动汽车集群灵活性潜力评估[J].南方电网技术,2025,19(3):60-71.WANG Qiujie,LIU Guanhui,TAN Hong,et al.Flexibility potential assessment of fuel-cell hybrid electric vehicle clusters considering the difference of owners’ charging willingness[J]. Southern Power System Technology,2025,19(3):60-71.
- [39]石博,肖传亮,彭克,等.基于集群划分的配电网网-源-储双层联合扩展规划策略[J].电力系统自动化,2023,47(14):43-51.SHI Bo,XIAO Chuanliang,PENG Ke,et al. Two-layer joint expansion planning strategy of grid-source-storage for distribution network based on cluster partition[J].Automation of Electric Power Systems,2023,47(14):43-51.
- [40] GUGGILAM S S,ZHAO C H,DALL’ANESE E,et al.Optimizing DER participation in inertial and primaryfrequency response[J].IEEE Transactions on Power Systems,33(5):5194-5205.
- [41] ZHAO H T,CHEN J C,WANG B,et al.A robust aggregate model for multi-energy virtual power plant in grid dispatch[C]//2019 IEEE Sustainable Power and Energy Conference(iSPEC). November 21-23,2019. Beijing,China.IEEE,2019:1631-1636.
- [42] RIAZ S,MANCARELLA P.Modelling and characterisation of flexibility from distributed energy resources[J].IEEE Transactions on Power Systems,2022,37(1):38-50.
- [43] LANNOYE E,FLYNN D,O’MALLEY M.Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems,2012,27(2):922-931.
- [44] THATTE A A,XIE L.A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch[J].IEEE Transactions on Power Systems,2016,31(5):3437-3446.
- [45] LU Z X,LI H B,QIAO Y.Probabilistic flexibility evaluation for power system planning considering its association with renewable power curtailment[J].IEEE Transactions on Power Systems,2018,33(3):3285-3295.
- [46]蒋正威,张锋明,胡凤桐,等.虚拟电厂分布式资源的聚合响应能力评估方法[J].电力工程技术,2022,41(6):39-49.JIANG Zhengwei,ZHANG Fengming,HU Fengtong,et al.Evaluation method of aggregated responsiveness of distributed resources in virtual power plant[J]. Electric Power Engineering Technology,2022,41(6):39-49.
- [47]樊伟,李旭东,王尧,等.新型电力系统灵活性资源聚合两阶段调度优化模型[J].电力建设,2023,44(2):25-37.FAN Wei,LI Xudong,WANG Yao,et al. Two-stage scheduling optimization model of flexible resource aggregation in new power system[J]. Electric Power Construction,2023,44(2):25-37.
- [48]王蓓蓓,仇知,丛小涵,等.基于两阶段随机优化建模的新能源电网灵活性资源边际成本构成的机理分析[J].中国电机工程学报,2021,41(4):1348-1359.WANG Beibei,QIU Zhi,CONG Xiaohan,et al. Mechanism analysis of flexible resources'marginal price in new energy grid based on two-stage stochastic optimization modeling[J]. Proceedings of the CSEE,2021,41(4):1348-1359.
- [49] FENG C,CHEN Q X,WANG Y,et al.Provision of contingency frequency services for virtual power plants with aggregated models[J].IEEE Transactions on Smart Grid,14(4):2798-2811.
- [50]徐天韵,陈涛,张鑫,等.基于奇诺多面体的虚拟电厂分布式资源广域聚合调控方法[J].电力系统自动化,2024,48(18):139-148.XU Tianyun,CHEN Tao,ZHANG Xin,et al.Zonotopebased wide-area aggregation and regulation method for distributed resources in virtual power plant[J].Automation of Electric Power Systems,2024,48(18):139-148.
- [51] DING Z T,LI Y P,ZHANG K F,et al.Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization[J].Applied Energy,2024,360:122829.
- [52] HARDY S,ERGUN H,VAN HERTEM D.A greedy algorithm for optimizing offshore wind transmission topologies[J].IEEE Transactions on Power Systems,2022,37(3):2113-2121.
- [53]吴家葆,曾国辉,张振华,等.基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J].可再生能源,2023,41(8):1015-1022.WU Jiabao,ZENG Guohui,ZHANG Zhenhua,et al.Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J].Renewable Energy Resources,2023,41(8):1015-1022.
- [54] QIU Z J,ZHANG X ,HAN Z Y,et al.Power allocation optimization strategy for multiple virtual power plants with diversified distributed flexibility resources[J]. IET Renewble Power Generation,2024,18(16):4034-4046.
- [55] HANSEN T M,ROCHE R,SURYANARAYANAN S,et al. Heuristic optimization for an aggregator-based resource allocation in the smart grid[C]//2016 IEEE Power and Energy Society General Meeting(PESGM).July 17-21,2016.Boston,MA,USA.IEEE,2016:1785-1794.
- [56] TEICHGRAEBER H, LINDENMEYER C P,BAUMG?RTNER N,et al.Extreme events in time series aggregation:a case study for optimal residential energy supply systems[J].Applied Energy,2020,275:115223.
- [57]陈民武,陈垠宇,徐烈,等.基于机会约束的贯通式同相牵引供电系统分布式优化运行策略[J].中国电机工程学报,2024,44(24):9583-9594.CHEN Minwu,CHEN Yinyu,XU Lie,et al.Distributed optimal operation of continuous co-phase traction power system via chance-constraint[J].Proceedings of the CSEE,2024,44(24):9583-9594.
- [58] MULLER F L,SUNDSTROM O,SZABO J,et al.Aggregation of energetic flexibility using zonotopes[C]//2015 54th IEEE Conference on Decision and Control(CDC).December 15-18,2015.Osaka,Japan.IEEE,2015:6564-6569.
- [59] ZHAO L,ZHANG W,HAO H,et al. A geometric approach to aggregate flexibility modeling of thermostatically controlled loads[J]. IEEE Transactions on Power Systems,2017,32(6):4721-4731.
- [60] CHICCO G,RIAZ S,MAZZA A,et al.Flexibility from distributed multienergy systems[J]. Proceedings of the IEEE,2020,108(9):1496-1517.
- [61] CóRDOVA S,CA?IZARES C A,LORCAá,et al.Aggregate modeling of thermostatically controlled loads for microgrid energy management systems[J].IEEE Transactions on Smart Grid,2023,14(6):4169-4181.
- [62]马杰,于振博,郝元钊,等.考虑动态频率响应的火电-储能调频优化控制[J].浙江电力,2025,44(3):10-21.MA Jie,YU Zhenbo,HAO Yuanzhao,et al.Optimal control of frequency modulation for thermal power and energy storage considering dynamic frequency response[J].Zhejiangejiang Electric Power,2025,44(3):10-21.
- [63] WANG S Y,WU W C. Aggregate flexibility of virtual power plants with temporal coupling constraints[J].IEEE Transactions on Smart Grid,2021,12(6):5043-5051.
- [64] TSAOUSOGLOU G,SARTZETAKIS I,MAKRIS P,et al. Flexibility aggregation of temporally coupled resources in real-time balancing markets using machine learning[J].IEEE Transactions on Industrial Informatics,2022,18(7):4342-4351.
- [65] CHEN L,TANG Z Y,HE S J,et al.Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources[J].Applied Energy,2024,362:123000.
- [66] SU H S,DENG C L,GUO F H,et al.Distributed load sharing and transmission power loss optimisation for DC microgrids[J].IET Control Theory&Applications,2019,13(17):2930-2939.
- [67] WANG Q S,DUAN Z S,WANG J Y.Distributed optimal consensus control algorithm for continuous-time multiagent systems[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(1):102-106.
- [68] SABER R O,MURRAY R M. Consensus protocols for networks of dynamic agents[C]//Proceedings of the 2003American Control Conference,2003. Denver,Colorado,USA.IEEE,2003:951-956.
- [69] Fattaheian-Dehkordi Sajjad,Aghaei Jamshid,Amjady Nima,et al. Decentralized management of unbalanced multi-agent distribution systems:A transactive approach leveraging ADMM framework[J].IET Generation Transmission&Distribution,2025,19(1).
- [70]杨珺,侯俊浩,刘亚威,等.分布式协同控制方法及在电力系统中的应用综述[J].电工技术学报,2021,36(19):4035-4049.YANG Jun,HOU Junhao,LIU Yawei,et al. Distributed cooperative control method and application in power system[J]. Transactions of China Electrotechnical Society,2021,36(19):4035-4049.
- [71]范博,杨秦敏,刘文新.微电网中并联分布式发电单元的分散式控制算法研究[J].浙江电力,2019,38(10):1-5.FAN Bo,YANG Qinmin,LIU Wenxin.Study on decentralized control algorithm of paralleled distributed generation units in microgrids[J].Zhejiang Electric Power,2019,38(10):1-5.
- [72] NEDIC A,OZDAGLAR A.Distributed subgradient methods for multi-agent optimization[J].IEEE Transactions on Automatic Control,2009,54(1):48-61.
- [73]程雪婷,暴悦爽,金玉龙,等.考虑新能源出力不确定性风险的虚拟电厂双层调度策略[J].现代电力,2023,40(6):967-975.CHENG Xueting,BAO Yueshuang,JIN Yulong,et al.Bilevel scheduling strategy for virtual power plants considering the risk of new energy output uncertainty[J].Modern Electric Power,2023,40(6):967-975.
- [74]刘备琳.考虑柔性指标的多能互补综合能源系统优化研究[D].长沙:中南大学,2023.LIU Beilin. Research on optimization of multi-energy complementary comprehensive energy system considering flexibility index[D].Changsha:Central South University,2023.
- [75]江昌旭,周龙灿,庄鹏威,等.基于数据-模型混合驱动方法的多类型移动应急资源优化调度策略[J/OL].电网技术,2024:1-21. https://doi_org. shiep. vpn358. com/10.13335/j.1000-3673.pst.2024.1516.JIANG Changxu,ZHOU Longcan,ZHUANG Pengwei,et al. Optimal scheduling strategy for multi-type mobile emergency resources based on hybrid data-model driven approach[J/OL]. Grid Technology,2024:1-21. https://doi_org. shiep. vpn358. com/10.13335/j. 1000-3673. pst.2024.1516.
- [76]原希尧,王关涛,朱若源,等.碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J].电力建设,2023,44(3):25-35.YUAN Xiyao,WANG Guantao,ZHU Ruoyuan,et al.Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric Power Construction,2023,44(3):25-35.
- [77]李飞,李咸善,鲁明芳,等.计及配额考核约束的发电商与大用户直购电博弈优化模型[J].高电压技术,2023,49(1):128-137.LI Fei,LI Xianshan,LU Mingfang,et al.Game optimization model of direct power purchase between power suppliers and large consumers with RPS assessment constrains[J].High Voltage Engineering,2023,49(1):128-137.
- [78]张驰,周骏,赵镔,等.零碳园区电-氢混合储能系统多目标优化配置[J].电力建设,2022,43(8):1-12.ZHANG Chi,ZHOU Jun,ZHAO Bin,et al. Multiobjective optimal configuration of electricity-hydrogen hybrid energy storage system in zero-carbon park[J].Electric Power Construction,2022,43(8):1-12.
- [79]冯松杰,魏韡.考虑新能源消纳和电力保供的电力系统多时间尺度平衡方法[J].电力系统自动化,2025,49(4):128-140.FENG Songjie,WEI Wei. Multi-timescale balancing method for power systems considering renewable energy accommodation and power supply support[J].Automation of Electric Power Systems,2025,49(4):128-140.
- [80] GHANUNI A,SHARIFI R,FESHKI FARAHANI H.A risk-based multi-objective energy scheduling and bidding strategy for a technical virtual power plant[J]. Electric Power Systems Research,2023,220:109344.
- [81]杨晓辉,黄泽中,王晓鹏,等.基于区间信息模糊规划模型的新能源微电网分层优化[J/OL].南方电网技术,1-10.https://http-kns_cnki_net. shiep. vpn358. com/kcms/detail/44.1643.TK.20241027.0704.002.html.YANG Xiaohui,HUANG Zezhong,WANG Xiaopeng,et al. Hierarchical optimization of new energy microgrid based on interval information fuzzy programming model[J/OL].China Southern Power Grid Technology,2024,1-10.https://http-kns_cnki_net. shiep. vpn358. com/kcms/detail/44.1643.TK.20241027.0704.002.html.
- [82]于志辉,赵志鹏,王进,等.面向灵活调节与低碳经济运行的风光水火多源多目标短期调度[J].电网技术,2025,49(8):3104-3115.YU Zhihui,ZHAO Zhipeng,WANG Jin,et al.Short-term multi-objective scheduling of wind-solar-hydro-thermal multi-power for flexible adjustment and low-carbon economic operation[J].Power System Technology,2025,49(8):3104-3115.
- [83]黄馨仪,刘明波,林舜江,等.考虑风电不确定性的输配电系统鲁棒经济调度分布式算法[J].电力系统自动化,2025,49(4):165-177.HUANG Xinyi,LIU Mingbo,LIN Shunjiang,et al. Distributed algorithm for robust economic dispatch of integrated transmission and distribution system considering wind power uncertainty[J].Automation of Electric Power Systems,2025,49(4):165-177.
- [84]陈湘元,吴公平,龙卓,等.考虑源荷不确定性及用户侧需求响应的综合能源系统多时间尺度优化调度[J].电力科学与技术学报,2024,39(3):217-227.CHEN Xiangyuan,WU Gongping,LONG Zhuo,et al.Multi-time scale optimal dispatch of integrated energy systems considering source-load uncertainty and user-side demand response[J].Journal of