浙江电力

2021, v.40;No.305(09) 41-46

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑综合特征参数及主导动态相似性的大型工业企业负荷等值建模
Load Equivalent Modeling for Large Industrial Enterprises Based on Characteristic Parameters and Dominant Dynamic Similarity

朱红卫,王毅,冷军,赵慧勉,沈海中,李彦东
ZHU Hongwei,WANG Yi,LENG Jun,ZHAO Huimian,SHEN Haizhong,LI Yandong

摘要(Abstract):

大型工业企业负荷母线感应电动机数量较多、型号不同,为研究负荷母线失电残压行为,需对其进行等值建模以获得整体动态。为此,提出基于特征参数及主导动态相似性的感应电动机动态等值方法。首先,根据奇异摄动理论对感应电动机进行模型降阶,获得其主导动态;然后,定义主导特征根的相似性距离,提出基于特征参数及主导动态相似性距离的电动机动态分群方法;最后,根据分群结果对感应电动机负荷母线进行等值建模,并以仿真算例和某煤化工企业的实际负荷算例验证所提方法的可行性。与现有方法的对比结果表明,所提方法可减少计算量,并且具有较高的等值精度。
Large industrial enterprises own a large number of different types of induction motors. To study the residual voltage after dump of load bus, it is necessary to carry out equivalent modeling to obtain the overall developments of large industrial enterprises. In this paper, a new dynamic equivalent method of induction motors based on characteristic parameters and dominant dynamic similarity is proposed. Firstly, model order reduction(MOR) of induction motor model is performed based on singular perturbation theory; secondly,similarity distance of dominant eigenvalues is defined, and the induction motors are clustered based on characteristic parameters and similarity distance of dominant eigenvalues; finally, equivalent modeling is conducted on load bus of induction motors based on the clustering result, and the feasibility of the proposed method is verified based on the simulation example and actual load example of a coal chemical enterprise.Compared with the existing method, the proposed method can reduce calculation load and is of high equivalence precision.

关键词(KeyWords): 感应电动机;主导动态;等值建模;特征根;煤化工企业
induction motor;dominant dynamics;equivalent modeling;eigenvalues;coal chemical enterprises

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金项目(52077061)

作者(Author): 朱红卫,王毅,冷军,赵慧勉,沈海中,李彦东
ZHU Hongwei,WANG Yi,LENG Jun,ZHAO Huimian,SHEN Haizhong,LI Yandong

DOI: 10.19585/j.zjdl.202109006

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享