浙江电力

2025, v.44;No.350(06) 31-40

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于深度强化学习的微电网运行优化方法
A DRL-based optimization method for microgrid operation

曾磊,丁泉,陈孝煜,岳娴雅
ZENG Lei,DING Quan,CHEN Xiaoyu,YUE Xianya

摘要(Abstract):

针对当前微电网中的源荷不确定性及调度策略灵活性不足的问题,提出基于深度强化学习的微电网运行优化方法。首先,构建包含光伏、储能和发电设备的微电网模型及其约束条件。其次,以降低系统运行成本和不平衡度为考量,构建多目标优化框架,同时考虑光伏发电、负荷需求和电价等不确定性因素,采用TD3(双延迟深度确定性策略梯度)算法,基于数据驱动的方式获得微电网调度策略。然后,通过在奖励函数中添加高比例错误动作惩罚项将各设备的出力约束在合理范围内,降低强化学习方法缺乏安全约束保障的风险。最后,仿真结果表明,与DDPG(深度确定策略梯度)算法相比,所提方法在经济性和稳定性方面表现更优,其经济成本更接近于理想状态下的确定性优化方法。
To address the challenges of source-load uncertainty and insufficient scheduling flexibility in microgrids, an optimization method for microgrid operation based on deep reinforcement learning(DRL) is proposed. First, a microgrid model comprising photovoltaic(PV), energy storage, and generation equipment is constructed, along with its constraint conditions. Second, a multi-objective optimization framework is established to minimize operating costs and imbalance of the system, considering uncertainties such as PV generation, load demand, and electricity prices. The twin delayed deep deterministic policy gradient(TD3) algorithm is employed to derive microgrid scheduling strategies in a data-driven manner. Third, a penalty term for high-proportion erroneous actions is incorporated into the reward function to constrain the output of each device within a reasonable range, mitigating the risk of insufficient safety guarantees inherent in reinforcement learning methods. Finally, simulation results demonstrate that, compared to the deep deterministic policy gradient(DDPG) algorithm, the proposed method achieves superior economic efficiency and stability, with economic costs closer to those of ideal deterministic optimization methods.

关键词(KeyWords): 深度强化学习;微电网;优化调度;双延迟深度确定性策略梯度;成本优化
DRL;microgrid;optimal scheduling;TD3;cost optimization

Abstract:

Keywords:

基金项目(Foundation): 上海市科学技术委员会科研计划项目(19DZ1205704)

作者(Author): 曾磊,丁泉,陈孝煜,岳娴雅
ZENG Lei,DING Quan,CHEN Xiaoyu,YUE Xianya

DOI: 10.19585/j.zjdl.202506003

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享