基于分割区域的配电网异常线损数据辨识与修正Identification and correction of abnormal line loss data in distribution networks based on segmented regions
张新鹤,何桂雄,梁琛,马喜平,何振武,姜飞
ZHANG Xinhe,HE Guixiong,LIANG Chen,MA Xiping,HE Zhenwu,JIANG Fei
摘要(Abstract):
针对配电网线损管理中基础数据异常和冗余量大的问题,提出基于分割区域的配电网异常线损数据辨识与修正方法。考虑终端数据存在冗余量,利用卡尔曼滤波算法对终端冗余数据进行融合,再遍历配电网各线路节点配电变压器,采用局部异常因子算法检测运行数据;基于配电网拓扑关系,采用GN(Girvan-Newman)算法对异常节点进行区域分割;通过分析分割区域邻近节点量测数据和不平衡度指标,动态调整区域边界,直到分割区域满足估计的可观性条件,得到分割区域最终划分结果,并基于区域内节点量测模型、约束模型和估计模型求解异常数据。最后,以西北某省10 kV什新线、什金线为算例进行分析验证,结果表明所提方法可有效实现配电网异常线损数据的辨识及修正。
Given the basic data anomalies and significant redundancy in line loss management within distribution networks, a technique for identifying and correcting abnormal line loss data based on segmented regions is proposed.In view of the redundancy of terminal data, a Kalman filter algorithm is employed to fuse terminal redundant data.Then, by traversing the distribution transformers of various line nodes in the distribution network and using local outlier factor(LOF) algorithm, the operational data are detected. Based on the topological relationship of the distribution networks, the Girvan-Newman(GN) algorithm is used to segment the abnormal nodes. By analyzing the neighboring node measurement data and the imbalance index of the segmented regions, the boundary of the regions is dynamically adjusted until the segmented regions meet the estimated observability conditions. The final division result of segmented regions is obtained, and abnormal data are solved using the measurement model, constraint model, and estimation model within the regions. Finally, an example of the 10 kV Shixin line and Shijin line in a province in Northwest China is used to validate the proposed method. The results demonstrate that the proposed method can identify and correct abnormal line loss data within distribution networks.
关键词(KeyWords):
线损数据;GN算法;局部异常因子;分割区域;卡尔曼滤波
line loss data;GN algorithm;LOF;segmented region;Kalman filter
基金项目(Foundation): 国家电网有限公司科技项目(52272221N002)
作者(Author):
张新鹤,何桂雄,梁琛,马喜平,何振武,姜飞
ZHANG Xinhe,HE Guixiong,LIANG Chen,MA Xiping,HE Zhenwu,JIANG Fei
DOI: 10.19585/j.zjdl.202310011
参考文献(References):
- [1]孙胜博,聂东,陈曦,等.基于聚类算法的低压电网分段线损智能识别方法[J].电网与清洁能源,2022,38(4):104-109.SUN Shengbo,NIE Dong,CHEN Xi,et al.An intelligent identification method for low-voltage power grid segmented line loss based on clustering algorithm[J].Power System and Clean Energy,2022,38(4):104-109.
- [2]伍栋文,于艾清,俞林刚,等.基于ICS-K-means聚类算法和WNN的有源低压台区线损估算方法[J].智慧电力,2022,50(4):8-14.WU Dongwen,YU Aiqing,YU Lingang,et al.Line loss estimation method based on ICS-K-means clustering algorithm and WNN for transformer district with DGs[J].Smart Power,2022,50(4):8-14.
- [3]张裕,徐依明,张彦,等.一种新K-means聚类算法的多元线性回归台区线损率预测模型[J].电力科学与技术学报,2021,36(5):179-186.ZHANG Yu,XU Yiming,ZHANG Yan,et al.Prediction model of line loss rate in the station area based on the multivariate linear regression integrated with a new K-means clustering algorithm[J].Journal of Electric Power Science and Technology,2021,36(5):179-186.
- [4]徐迪,陆煜锌,肖勇,等.基于孤立森林算法的配电网线损异常判定[J].电力系统保护与控制,2021,49(16):12-18.XU Di,LU Yuxin,XIAO Yong,et al.Identification of abnormal line loss for a distribution power network based on an isolation forest algorithm[J].Power System Protection and Control,2021,49(16):12-18.
- [5]潘全成,袁铭敏,羡慧竹,等.基于电能计量采集物联网的多维线损治理技术研究与应用[J].电气传动自动化,2021,43(3):47-51.PAN Quancheng,YUAN Mingmin,XIAN Huizhu,et al.Research and application of multidimensional line loss control technology based on the Internet of Things of electric energy measurement and collection[J].Electric Drive Automation,2021,43(3):47-51.
- [6]李亚,刘丽平,李柏青,等.基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J].中国电机工程学报,2016,36(17):4543-4552.LI Ya,LIU Liping,LI Baiqing,et al. Calculation of line loss rate in transformer district based on improved Kmeans clustering algorithm and BP neural network[J].Proceedings of the CSEE,2016,36(17):4543-4552.
- [7]夏澍,王乃盾,史媛,等.电缆配电网的线-变-表拓扑异常辨识方法[J].电力系统保护与控制,2019,47(11):44-50.XIA Shu,WANG Naidun,SHI Yuan,et al. Linetransformer-meter topology anomaly identification method for cable distribution network[J]. Power System Protection and Control,2019,47(11):44-50.
- [8]林宝德,杨铮宇.基于多维特征的电网台区线损数据异常识别研究[J].电力系统保护与控制,2022,50(9):172-178.LIN Baode,YANG Zhengyu. Anomaly recognition of line loss data in power grid stations based on multidimensional features[J]. Power System Protection and Control,2022,50(9):172-178.
- [9]陈嘉宁,杨翾,叶承晋,等.基于缺失数据修复的变压器在线故障诊断方法[J].电力系统保护与控制,2019,47(15):86-92.CHEN Jianing,YANG Xuan,YE Chengjin,et al.On-line fault diagnosis method for power transformer based on missing data repair[J].Power System Protection and Control,2019,47(15):86-92.
- [10]孙一浩,肖先勇,张文海,等.基于伪异常点辨识的关口电能表计量数据异常研究[J].电网技术,2021,45(11):4568-4577.SUN Yihao,XIAO Xianyong,ZHANG Wenhai,et al.Abnormal measurement data of gateway energy meter based on pseudo outlier identification[J]. Power System Technology,2021,45(11):4568-4577.
- [11]张义涛,王泽忠,刘丽平,等.基于灰色关联分析和改进神经网络的10 kV配电网线损预测[J].电网技术,2019,43(4):1404-1410.ZHANG Yitao,WANG Zezhong,LIU Liping,et al.A 10kV distribution network line loss prediction method based on grey correlation analysis and improved artificial neural network[J]. Power System Technology,2019,43(4):1404-1410.
- [12]曾祥军,冯琛,杨明,等.考虑运行状态相似性的风电机组数据异常检测方法[J].电力系统自动化,2022,46(11):170-180.ZENG Xiangjun,FENG Chen,YANG Ming,et al. Data anomaly detection method for wind turbines considering operation state similarity[J]. Automation of Electric Power Systems,2022,46(11):170-180.
- [13]郑应俊,杨艺宁,舒一飞,等.基于边缘计算的低压用户窃电检测[J].电力系统自动化,2022,46(11):111-120.ZHENG Yingjun,YANG Yining,SHU Yifei,et al.Electricity theft detection for low-voltage users based on edge computing[J]. Automation of Electric Power Systems,2022,46(11):111-120.
- [14] KONG X Y,ZHANG X P,LU N,et al.Online smart meter measurement error estimation based on EKF and LMRLS method[J]. IEEE Transactions on Smart Grid,2021,12(5):4269-4279.
- [15]张佳楠,袁启海,余建明,等.基于联络线扩展区域分解协调的分布式并行状态估计[J].电力系统自动化,2019,43(4):166-173.ZHANG Jianan,YUAN Qihai,YU Jianming,et al.Distributed parallel state estimation based on decomposition and coordination of tie-line extended area[J]. Automation of Electric Power Systems,2019,43(4):166-173.
- [16]周王峰,李勇,郭钇秀,等.基于DAE-LSTM神经网络的配电网日线损率预测[J].电力系统保护与控制,2021,49(17):48-56.ZHOU Wangfeng,LI Yong,GUO Yixiu,et al.Daily line loss rate forecasting of a distribution network based on DAE-LSTM[J]. Power System Protection and Control,2021,49(17):48-56.
- [17]苏蓉,赵俊博,张葛祥,等.一种计及全量测相关性的混合电力系统状态估计方法[J].电网技术,2018,42(8):2651-2658.SU Rong,ZHAO Junbo,ZHANG Gexiang,et al.A hybrid power system state estimation method considering measurement correlations[J]. Power System Technology,2018,42(8):2651-2658.
- [18]费思源.大数据技术在配电网中的应用综述[J].中国电机工程学报,2018,38(1):85-96.FEI Siyuan. Overview of application of big data technology in power distribution system[J]. Proceedings of the CSEE,2018,38(1):85-96.
- [19]程昱舒,靳海岗,王晖南.基于泛在电力物联网下双向长短时记忆的线损预测计算方法[J].电力电容器与无功补偿,2022,43(2):83-89.CHENG Yushu,JIN Haigang,WANG Huinan.Line loss prediction method based on bidirectional long short time memory in ubiquitous power Internet of Things[J].Power Capacitor&Reactive Power Compensation,2022,43(2):83-89.
- [20]陈光宇,徐嘉杰,卢兆军,等.基于相关性度量算法的台区线损异常判断及精准定位[J].电力工程技术,2022,41(4):67-74.CHEN Guangyu,XU Jiajie,LU Zhaojun,et al.Judgment and precise location of abnormal line loss in station area based on correlation measurement algorithm[J]. Electric Power Engineering Technology,2022,41(4):67-74.
- [21]钟小强,陈杰,高琛,等.基于功率交换和截断总体最小二乘法的线损预测技术[J].电测与仪表,2022,59(5):136-141.ZHONG Xiaoqiang,CHEN Jie,GAO Chen,et al. Line loss prediction technology based on power exchange and truncated total least square method[J].Electrical Measurement&Instrumentation,2022,59(5):136-141.
- [22]程淑亚,蔡慧,沈海泓,等.基于数据挖掘的新型低压窃电识别方法[J].电测与仪表,2022,59(2):68-76.CHENG Shuya,CAI Hui,SHEN Haihong,et al.A novel judgment method to uncover low voltage electricity theft based on data mining[J].Electrical Measurement&Instrumentation,2022,59(2):68-76.
- [23]张明明,秦平,陈永进,等.考虑综合收益最大的低压配电网三相不平衡治理模型研究[J].电力电容器与无功补偿,2022,43(6):73-78.ZHANG Mingming,QIN Ping,CHEN Yongjin,et al.Research on three-phase unbalanced governance model of low-voltage distribution network considering the maximum comprehensive benefit[J].Power Capacitor&Reactive Power Compensation,2022,43(6):73-78.
- [24]刘科研,盛万兴,何开元,等.基于拉格朗日松弛技术的复杂有源配电网分布式状态估计[J].电力系统保护与控制,2017,45(15):125-132.LIU Keyan,SHENG Wanxing,HE Kaiyuan,et al.Distributed state estimation of complex active distribution network based on Lagrange relaxation technique[J]. Power System Protection and Control,2017,45(15):125-132.
- [25]李晨希,史佳琪,刘念,等.基于复杂网络的电力用户群体演化分析模型[J].中国电机工程学报,2022,42(16):5835-5847.LI Chenxi,SHI Jiaqi,LIU Nian,et al.Analysis model of power user group evolution based on complex network[J].Proceedings of the CSEE,2022,42(16):5835-5847.
- [26]王方雨,刘文颖,陈鑫鑫,等.基于“秩和”近似相等特性的同期线损异常数据辨识方法[J].电工技术学报,2020,35(22):4771-4783.WANG Fangyu,LIU Wenying,CHEN Xinxin,et al.Abnormal data identification of synchronous line loss based on the approximate equality of rank sum[J].Transactions of China Electrotechnical Society,2020,35(22):4771-4783.
- [27]左松林,陈伟,付真斌,等.基于EKF算法的分布式光伏发电异常数据排查技术[J].电力工程技术,2020,39(5):120-125.ZUO Songlin,CHEN Wei,FU Zhenbin,et al.Abnormal data inspection technology of photovoltaic power generation based on EKF algorithm[J].Electric Power Engineering Technology,2020,39(5):120-125.
- [28]徐焕增,孔政敏,王帅,等.基于动态线损及FMRLS算法的智能电表误差在线评估模型[J].中国电机工程学报,2021,41(24):8349-8358.XU Huanzeng,KONG Zhengmin,WANG Shuai,et al.Online error evaluation model of smart meter based on dynamic line loss and FMRLS algorithm[J].Proceedings of the CSEE,2021,41(24):8349-8358.
- [29]陈未,潘越,符煌莹,等.基于大数据分析的台区线损综合治理排查模型研究及应用[J].浙江电力,2021,40(5):60-65.CHEN Wei,PAN Yue,FU Huangying,et al. Research and application of a model of comprehensive line loss management and investigation in supply area based on big data analysis[J].Zhejiang Electric Power,2021,40(5):60-65.
- [30]安佳坤,贺春光,邵华,等.一种面向时空全过程的线损变动分析方法[J].电力科学与技术学报,2017,32(3):100-105.AN Jiakun,HE Chunguang,SHAO Hua,et al. Analysis method of line loss fluctuation based on whole space-time process[J]. Journal of Electric Power Science and Technology,2017,32(3):100-105.
- [31]夏伟,蔡文婷,刘阳,等.基于联合卡尔曼滤波的配电网多源异构数据融合[J].电力系统保护与控制,2022,50(10):180-187.XIA Wei,CAI Wenting,LIU Yang,et al. Multi-source heterogeneous data fusion of a distribution network based on a joint Kalman filter[J].Power System Protection and Control,2022,50(10):180-187.
- [32]宋惠忠,顾华忠,顾韬,等.基于多源数据挖掘的低压配电网线损智能诊断模型[J].浙江电力,2017,36(12):57-62.SONG Huizhong,GU Huazhong,GU Tao,et al. Intelligent diagnostic model for line losses of distribution networks based on multi-source data mining[J]. Zhejiang Electric Power,2017,36(12):57-62.
- [33]陈峰,蒋军,王博文,等.在线理论线损计算及线损精益化管理系统设计与应用[J].浙江电力,2018,37(11):79-83.CHEN Feng,JIANG Jun,WANG Bowen,et al. Design and application of online theoretical line loss calculation and the lean management system[J]. Zhejiang Electric Power,2018,37(11):79-83.
- [34]邓杰,姜飞,王文烨,等.考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J].电网技术,2022,46(5):1692-1704.DENG Jie,JIANG Fei,WANG Wenye,et al.Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology,2022,46(5):1692-1704.
- [35]林政阳,姜飞,涂春鸣,等.考虑时序相关性的数据驱动电-气综合能源系统态势感知[J].电网技术,2022,46(9):3385-3394.LIN Zhengyang,JIANG Fei,TU Chunming,et al.Datadriven electricity-gas integrated energy system situation awareness considering time series correlation[J]. Power System Technology,2022,46(9):3385-3394.