浙江电力

2024, v.43;No.344(12) 86-94

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于谱归一化生成对抗网络与谱聚类的典型风力发电场景生成
Generation of typical wind power scenarios based on spectral normalization generative adversarial networks and spectral clustering

孟凡斌,南钰,武亚非,赵灵昊,卢长坤,乔金朋
MENG Fanbin,NAN Yu,WU Yafei,ZHAO Linghao,LU Changkun,QIAO Jinpeng

摘要(Abstract):

针对风力发电场景数据高维复杂的问题,提出一种基于谱归一化生成对抗网络与谱聚类的风力发电场景生成方法。首先,对生成器和判别器的两个深度神经网络进行对抗训练,并对判别器的卷积层进行谱归一化,通过增强模型的Lipschitz连续性约束来提高风电场景数据训练的稳定性和场景生成的质量。其次,采用基于改进高斯核函数的谱聚类方法提取风电特征,对高维数据进行降维,将生成的场景转化为典型风电场景集。最后,采用公开的WIND风电数据集进行仿真。仿真结果表明:所提方法能够显著降低生成样本的均方误差,精确捕捉风力发电的时空相关性;同时,基于高斯核函数的谱聚类方法能够有效对样本空间聚类。
To address the high-dimensional complexity of wind farm scenario data, a generation method based on spectral normalization generative adversarial networks and spectral clustering is proposed. First, adversarial training is performed on two deep neural networks of the generator and discriminator, with spectral normalization applied to the convolutional layers of the discriminator to enhance the Lipschitz continuity constraint, thereby improving the stability of data training and the quality of generated wind farm scenarios. Next, an improved Gaussian kernel-based spectral clustering method is used to extract wind power features and reduce the dimensionality of the data, transforming the generated scenarios into a set of typical wind farm scenarios. Finally, simulations are conducted using the publicly available WIND dataset. The simulation results indicate that the proposed method significantly reduces the mean squared errors of generated samples, accurately capturing the spatiotemporal correlations of wind power generation; the spectral clustering based on Gaussian kernel function effectively clusters the sample space.

关键词(KeyWords): 电力系统;生成对抗网络;场景生成;谱归一化;谱聚类
power system;generative adversarial network;scenario generation;spectral normalization;spectral clustering

Abstract:

Keywords:

基金项目(Foundation): 上海市自然科学基金项目(22ZR1425500);; 国网河南省电力公司科技项目(521790240005)

作者(Author): 孟凡斌,南钰,武亚非,赵灵昊,卢长坤,乔金朋
MENG Fanbin,NAN Yu,WU Yafei,ZHAO Linghao,LU Changkun,QIAO Jinpeng

DOI: 10.19585/j.zjdl.202412009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享