浙江电力

2025, v.44;No.350(06) 91-99

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于种子生长策略与深度神经网络的电力工作票智能识别方法
An intelligent recognition method for electrical work permits based on seed growth strategy and deep neural networks

廖美英,周俊煌,张勇军
LIAO Meiying,ZHOU Junhuang,ZHANG Yongjun

摘要(Abstract):

针对电力工作票的数字化需求,提出了一种基于种子生长策略与DenseNet(稠密连接网络)的智能识别方法。首先,在文本检测阶段,利用种子生长策略,通过选取初始种子点并逐步扩展候选区域,有效提升了对不规则文本区域的定位精度。然后,在文字识别阶段,结合DenseNet的深层特征提取能力与CTC技术的不定长序列对齐机制,提升了字符序列的识别效果。最后,通过实验证明所提方法在设备代码、电气符号等行业专用字符的识别中表现出更高的准确率,显著降低了误识别率,有效满足了电力工作票数字化处理的需求,具有较强的实用价值和应用前景。
In response to the digitalization needs of electrical work permits, an intelligent recognition method based on the seed growth strategy and dense convolutional network(DenseNet) is proposed. Firstly, during text detection, the seed growth strategy is employed to select an initial seed point and gradually expand the candidate areas, effectively improving the localization accuracy for irregular text areas. Then, during text recognition, the method combines DenseNet's deep feature extraction capabilities with the CTC technique's mechanism for aligning variablelength sequences, enhancing the recognition performance of character sequences. Finally, experiments demonstrate that the proposed method achieves higher accuracy in recognizing industry-specific characters, such as equipment codes and electrical symbols, significantly reducing misrecognition rates and effectively meeting the digital processing needs of electrical work permits. The method shows strong practical value and promising application potential.

关键词(KeyWords): 种子生长策略;深度神经网络;不定长文本识别;电力工作票
seed growth strategy;deep neural network;variable-length text recognition;electrical work permit

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(62376100)

作者(Author): 廖美英,周俊煌,张勇军
LIAO Meiying,ZHOU Junhuang,ZHANG Yongjun

DOI: 10.19585/j.zjdl.202506009

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享