氢电耦合系统安全风险研究Study on the safety risk of a hydrogen-electric coupling system
刘敏,张雪松,赵红霞,王许志,鲁晨昱,李文博,张存满
LIU Min,ZHANG Xuesong,ZHAO Hongxia,WANG Xuzhi,LU Chenyu,LI Wenbo,ZHANG Cunman
摘要(Abstract):
氢电耦合系统是新型电力系统不可或缺的重要组成部分,安全性是其规模化应用的前提。以氢电耦合系统为研究对象,对其关键涉氢装备发生的事故进行了汇总与研究,进而应用故障树对氢气泄漏引起的燃烧与爆炸事故开展了氢电耦合系统安全风险评价。研究表明,储氢与压缩设备是易发生安全事故的关键涉氢装备,设计缺陷、密封问题与操作失误是氢安全事故的重要诱因。通过故障树分析可知,存在5种有效避免氢电耦合系统发生氢气泄漏导致火灾或爆炸事故发生的途径。研究获得的氢电耦合系统危险源及基本事件的重要程度可为安全防护措施的制定奠定基础。
The hydrogen-electric coupling system is an important and indispensable part of a new-type power system, and its safety is a prerequisite for large-scale application. The hydrogen-electric coupling system is studied, and the accidents in key hydrogen-related equipment are summarized and investigated.Furthermore, fault tree analysis(FTA) is used for safety risk evaluation on the combustion and explosion of the hydrogen-electric coupling system caused by hydrogen leakage. The study shows that hydrogen storage and compression equipment is prone to safety accidents, and design defects, sealing, and operation errors are major causes of hydrogen accidents. The fault tree analysis shows that there are five ways to effectively prevent the hydrogen-electric coupling system from fire or explosion due to hydrogen leakage. The importance of the hazard sources and basic events of the system obtained from the study lays the foundation for developing safety protection measures.
关键词(KeyWords):
氢能;氢电耦合系统;安全风险;故障树分析
hydrogen energy;hydrogen-electric coupling system;safety risk;fault tree analysis
基金项目(Foundation): 国家电网有限公司科技项目(5400-201919487A-0-0-00)
作者(Author):
刘敏,张雪松,赵红霞,王许志,鲁晨昱,李文博,张存满
LIU Min,ZHANG Xuesong,ZHAO Hongxia,WANG Xuzhi,LU Chenyu,LI Wenbo,ZHANG Cunman
DOI: 10.19585/j.zjdl.202305004
参考文献(References):
- [1]周倜然.氢电耦合的跨界猜想[N].中国电力报,2022-07-21(7).
- [2]朱凯,张艳红.“双碳”形势下电力行业氢能应用研究[J].发电技术,2022,43(1):65-72.ZHU Kai,ZHANG Yanhong. Research on application of hydrogen in power industry under “double carbon” circumstance[J]. Power Generation Technology,2022,43(1):65-72.
- [3]雷超,李韬.碳中和背景下氢能利用关键技术及发展现状[J].发电技术,2021,42(2):207-217.LEI Chao,LI Tao.Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology,2021,42(2):207-217.
- [4]王杰,吴昊,熊力,辛颂旭,等.内蒙古自治区氢电耦合助力构建新型能源体系实证研究[J/OL].水力发电:1-6[2023-03-11]. http://kns. cnki. net/kcms/detail/11.1845.TV.20230222.1156.002.html.WANG Jie,WU Hao,XIONG Li,et al.Empirical study on the construction of new energy system assisted by hydrogen and electricity coupling in Inner Mongolia Autonomous Region[J/OL]. Hydropower:1-6[2023-03-11].http://kns.cnki.net/kcms/detail/11.1845.TV.20230222.1156.002.html.
- [5]郑津洋,刘自亮,花争立,等.氢安全研究现状及面临的挑战[J].安全与环境学报,2020,20(1):106-115.ZHENG Jinyang,LIU Ziliang,HUA Zhengli,et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment,2020,20(1):106-115.
- [6]刘堃,杨晓冬,戴超.基于危险度评价和事故树分析的加氢站安全风险研究[J].中国安全生产科学技术,2021,17(增刊1):50-55.LIU Kun,YANG Xiaodong,DAI Chao. Study on the safety risk of hydrogen refueling station based on risk assessment and fault tree analysis[J].Journal of Safety Science and Technology,2021,17(S1):50-55.
- [7]袁雄军,葛秀坤,王凯全.气态加氢站定量风险评估研究[J].工业安全与环保,2012,38(6):47-49.YUAN Xiongjun,GE Xiukun,WANG Kaiquan.Quantitative risk assessment on a gaseous hydrogen refueling station[J]. Industrial Safety and Environmental Protection,2012,38(6):47-49.
- [8]李志勇,潘相敏,马建新.加氢站氢气事故后果量化评价[J].同济大学学报(自然科学版),2012,40(2):286-291.LI Zhiyong,PAN Xiangmin,MA Jianxin.Quantitative assessment on hydrogen releases of hydrogen refueling station by consequence modeling[J].Journal of Tongji University(Natural Science),2012,40(2):286-291.
- [9] SHEN Y,ZHENG T,LV H,et al.Numerical simulation of hydrogen leakage from fuel cell vehicle in an outdoor parking garage[J].World Electric Vehicle Journal,2021,12(3):118.
- [10] WANG B,SHEN Y,LV H,et al.A Numerical Simulation on the Leakage Event of a High-Pressure Hydrogen Dispenser[J]. World Electric Vehicle Journal,2021,12(4):259.
- [11] SUZUKI T,SHIOTA K,IZATO Y,et al. Quantitative risk assessment using a Japanese hydrogen refueling station model[J].International Journal of Hydrogen Energy,2021,46(11):8329-8343.
- [12] GYE H R,SEO S K,BACH Q V,et al.Quantitative risk assessment of an urban hydrogen refueling station[J].International Journal of Hydrogen Energy,2019,44(2):1288-1298.
- [13] TSUNEMI K,KIHARA T,KATO E,et al.Quantitative risk assessment of the interior of a hydrogen refueling station considering safety barrier systems[J]. International Journal of Hydrogen Energy,2019,44(41):23522-23531.
- [14] LIANG Y,PAN X,ZHANG C,et al.The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station[J].International Journal of Hydrogen Energy,2019,44(40):22608-22619.
- [15]汪侃,李丹阳,时婷婷.新型油氢合建站事故风险评价及应用[J].安全与环境学报,2021,21(1):9-18.WANG Kan,LI Danyang,SHI Tingting.Risk assessment approach and its application to the new-type oil-hydrogen station accidents[J]. Journal of Safety and Environment,2021,21(1):9-18.
- [16]氢云链.宁波建成国际首个“电-氢-热”微网耦合直流能源互联网示范工程[J].上海节能,2023(1):34.QING Yunlian. Ningbo has built the first international demonstration project of “electricity-hydrogen-heat” microgrid coupling DC energy Internet[J].Shanghai Energy Saving,2023(1):34.
- [17]陈宇,赵彦旻,曹吉领,等.氢电耦合在高弹性电网中的应用场景及投资收益分析[J].能源工程,2022,42(3):88-92.CHEN Yu,ZHAO Yanmin,CAO Jiling,et al.Application scenario and investment income analysis of hydrogen electric coupling in high elastic power grid[J]. Energy Engineering,2022,42(3):88-92.
- [18]张城兴,付玉生.氢燃料电池汽车车载用氢安全问题分析及对策研究[J].河南科技,2020(7):139-141.ZHANG Chengxing,FU Yusheng. Safety analysis and countermeasures of hydrogen used in hydrogen fuel cell vehicle[J].Henan Science and Technology,2020(7):139-141.
- [19] SAKAMOTO J,SATO R,NAKAYAMA J,et al.Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA[J]. International Journal of Hydrogen Energy,2016,41(46):21564-21570.
- [20]杜敏维,于德湖,邵志国.基于T-S模糊故障树和贝叶斯网络的建筑施工风险评估模型建立及应用[J].青岛理工大学学报,2023,44(1):21-29.DU Minwei,YU Dehu,SHAO Zhiguo.Establishment and application of building construction risk assessment model based on T-S fuzzy fault tree and Bayesian network[J].Journal of Qingdao University of Technology,2023,44(1):21-29.
- [21]韦刚.基于事故链模糊事故树分析法的瓦斯爆炸关键危险源辨识与评价[D].太原:太原理工大学,2015.WEI Gang.Identification and evaluation of key hazards of gas explosion based on fuzzy fault tree analysis of accident chain[D]. Taiyuan:Taiyuan University of Technology,2015.
- [22]王家帮,党林贵.电站锅炉水冷壁爆管故障树分析[J].锅炉技术,2021,52(增刊1):72-75.WANG Jiabang,DANG Lingui.Fault tree analysis of water wall tube rupture accident of power plant boiler[J].Boiler Technology,2021,52(S1):72-75.
- [23] XING Y,WU J,BAI Y,et al.All-process risk modelling of typical accidents in urban hydrogen refueling stations[J]. Process Safety and Environmental Protection,2022,166:414-429.
- [24] MIRZA N R,DEGENKOLBE S,WITT W.Analysis of hydrogen incidents to support risk assessment[J].International Journal of Hydrogen Energy,2011,36(18):12068-12077.
- [25] JIANG Y,PAN X,ZHANG T,et al.Experimental study on pressure and flow characteristics of self-ignition hydrogen flowing into the unconfined space[J].Process Safety and Environmental Protection,2022,159:120-132.
- [26] COMMITTEE FOR THE PREVENTION OF DISASTERS.Guide lines for quantitative risk assessment[M].Hague:PGS,2005.
- [27] PAN X,LI Z,ZHANG C,et al.Safety study of a windsolar hybrid renewable hydrogen refuelling station in China[J]. International Journal of Hydrogen Energy,2016,41(30):13315-13321.
- [28] PLACCA L,KOUTA R.Fault tree analysis for PEM fuel cell degradation process modelling[J]. International Journal of Hydrogen Energy,2011,36(19):12393-12405.
- [29] ROSYID O A,JABLONSKI D,HAUPTMANNS U.Risk analysis for the infrastructure of a hydrogen economy[J]. International Journal of Hydrogen Energy,2007,32(15):3194-3200.
- [30] OREDA. Offshore reliability data handbook[M]. 4th ed.Hovic Norway:DNV,2002.
- [31] COLLONG S,KOUTA R. Fault tree analysis of proton exchange membrane fuel cell system safety[J]. International Journal of Hydrogen Energy,2015,40(25):8248-8260.