基于神经网络的电网假数据注入攻击检测方法研究Detection Method of False Data Injection Attack on Power Grid Based on Neural Networks
蒋正威,张超,孙伟乐,赵友国,隋向阳
JIANG Zhengwei,ZHANG Chao,SUN Weile,ZHAO Youguo,SUI Xiangyang
摘要(Abstract):
状态估计是现代电力系统运行与控制的关键环节,假数据注入攻击可以绕过基于残差的传统错误数据检测方法,威胁电网正常运行。针对交流系统状态估计,提出了基于DWT(离散小波变换)和DNN(深度神经网络)的电网假数据注入攻击检测方法。利用小波变换提取多时段状态估计结果中的时-频特征,并将时-频特征进一步量化为所有时刻小波变换系数的期望和方差;再将状态估计的时-频特征作为输入,通过经离线训练的DNN在线输出攻击检测结果。算例证明所提方法能够有效提高电网假数据注入攻击检测的准确性。
State estimation is critical to modern power system operation and control. The false data injection attack(FDIA) can bypass the traditional residual-based error data detection and threaten the normal operation of the power grid. For the state estimation of the AC system, this paper proposes a detection method of FDIA based on DWT(discrete wavelet transform) and DNN(deep neural network). Wavelet transform is applied to extract the time-frequency feature of multi-period state estimation results, and the time-frequency features are quantized as the expectation and variance of wavelet transform coefficients; then taking the time-frequency feature of state estimation as the input, the detection results of false data attack are output online through the DNN trained offline. An example shows that the proposed method can effectively improve the accuracy of FDIA detection.
关键词(KeyWords):
状态估计;假数据注入攻击;小波变换;深度神经网络
state estimation;FDIA;wavelet transformation;deep neural network
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211HZ1800P3)
作者(Author):
蒋正威,张超,孙伟乐,赵友国,隋向阳
JIANG Zhengwei,ZHANG Chao,SUN Weile,ZHAO Youguo,SUI Xiangyang
DOI: 10.19585/j.zjdl.202011008
参考文献(References):
- [1]李青芯,孙宏斌,盛同天,等.变电站状态估计中互感器虚假数据注入攻击分析[J].电力系统自动化,2016,40(17):79-86.
- [2]田猛,王先培,董政呈,等.基于拉格朗日乘子法的虚假数据攻击策略[J].电力系统自动化,2017,41(11):26-32.
- [3]DENG R,XIAO G,LU R.Defending against false data injection attacks on power system state estimation[J].IEEE Transactions on Industrial Informatics,2017,13(1):198-207.
- [4]YU Z H,CHIN W L.Blind false data injection attack using PCA approximation method in smart grid[J].IEEE Transactions on Smart Grid,2015,6(3):1219-1226.
- [5]LIU X,BAO Z,LU D,et al.Modeling of local false data injection attacks with reduced network information[J].IEEE Transactions on Smart Grid,2015,6(4):1686-1696.
- [6]HUG G,GIAMPAPA J A.Vulnerability assessment of AC state estimation with respect to false data injection cyberattacks[J].IEEE Transactions on Smart Grid,2012,3(3):1362-1370.
- [7]LIU X,LI Z Y.False data attacks against AC state estimation with incomplete network information[J].IEEE Transactions on smart grid,2017,8(5):2239-2248.
- [8]FOROUTAN S A,SALMASI F R.Detection of false data injection attacks against state estimation in smart grids based on a mixture gaussian distribution learning method[J].IET Cyber-Physical Systems:Theory&Applications,2017,2(4):161-171.
- [9]MANANDHAR K,CAO X J,HU F,et al.Detection of faults and attacks including false data injection attack in smart grid using Kalman filter[J].IEEE transactions on control of network systems,2014,1(4):370-379.
- [10]LIU L C,ESMALIFALAK M,DING Q F,et al.Detecting false data injection attacks on power grid by sparse opti mization[J].IEEE Transactions on Smart Grid,2014,5(2):612-621.
- [11]XU R Z,WANG R,GUAN Z T,et al.Achieving efficient detection against false data injection attacks in smart grid[J].IEEE Access,2017(5):13787-13798.
- [12]GUAN Y P,GE X H.Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks[J].IEEE Transactions on Signal and Information Processing over Networks,2018,4(1):48-59.
- [13]BEG O A,JOHNSON T T,DAVOUDI A.Detection of falsedata injection attacks in cyber-physical DC microgrids[J].IEEE Transactions on industrial informatics,2017,13(5):2693-2703.
- [14]李元诚,曾婧.基于改进卷积神经网络的电网假数据注入攻击检测方法[J].电力系统自动化,2019,43(20):97-104.
- [15]MALLAT S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,1989,11(7):674-693.
- [16]MISHRA D P,SAMANTARAY S R,JOOS G.A combined wavelet and data-mining based intelligent protection scheme for microgrid[J].IEEE Transactions on Smart Grid,2015,7(5):2295-2304.