浙江电力

2021, v.40;No.306(10) 95-101

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于邻域前向时序最优组合的分布式光伏超短期功率预测
Ultra Short-term Distributed Photovoltaic Power Forecasting Based on Neighboring Optimal Forward Sequential Combination

唐雅洁,龚迪阳,倪筹帷,王波,张雪松,朱耿
TANG Yajie,GONG Diyang,NI Chouwei,WANG Bo,ZHANG Xuesong,ZHU Geng

摘要(Abstract):

在全球碳中和目标下,光伏等清洁零碳新能源成为碳减排的关键,分布式光伏也成为该行业发展的重要方向。由于分布式光伏出力具有较强的随机性和波动性,精准功率预测是其参与电网调度运行的基础。在当前分布式光伏所获取信息有限的情况下,提出了一种基于邻域前向时序最优组合的分布式光伏超短期功率预测模型,考虑邻近区域分布式光伏站点间实时出力关联性,挖掘生成区域性多气象状态时空耦合预测场景。模型扩展有效信息维度,在不依赖于地表气象观测装置的情况下进行高效训练建模,具有经济、轻量与易部署的特点,提升了有限信息下的分布式光伏超短期功率预测精度。采用某区域分布式光伏系统实采数据进行算例分析,分别与基于功率时序推移、基于多站点相似的经典分布式光伏超短期功率预测模型相比较,结果表明所提模型具有更高的预测精度。
In the context of global carbon neutrality, redoubling the development of PV and other clean zero carbon new energies is the master key to carbon emission reduction, and distributed PV now has become the course of PV industry. Distributed PV features output power randomness and fluctuation, precise power forecasting technology is the base of its participation in power grid dispatching and operation. In the context of distributed PV generations with limited acquired information, this paper proposes an ultra-short-term PV power forecasting model based on neighboring optimal forward sequential combination considering the relevance of real-time power outputs in distributed PV stations in neighboring areas and mining and generating regional multi-meteorological and spatio-temporal coupling forecast scene. The model expands the effective dimension of acquired information, provides an efficient training method without the dependency of land meteorological observative service. Meanwhile, it is also economical and light and can be easily deployed, thus increasing the accuracy of ultra short-time distributed PV power forecasting with limited information. Through experimental verification of the measured data of regional distributed PV generations in a district, Zhejiang Province,the proposed model, compared to typical models based on times series and similar multi-stations forecasting,is more accurate in ultra-short-term distributed PV power forecasting.

关键词(KeyWords): 超短期功率预测;分布式光伏;邻域;时间序列;前向选择;组合模型
ultra short-term power forecasting;distributed PV generation;neighboring area;time series;forward selection;combined model

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(51807026)

作者(Author): 唐雅洁,龚迪阳,倪筹帷,王波,张雪松,朱耿
TANG Yajie,GONG Diyang,NI Chouwei,WANG Bo,ZHANG Xuesong,ZHU Geng

DOI: 10.19585/j.zjdl.202110012

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享