基于事件触发机制的配电网拓扑-状态联合估计Joint topology and state estimation for distribution networks using an event-triggered mechanism
程嘉诚,刘子琛,王琰迪,朱红,许洪华,纪业,卫志农
CHENG Jiacheng,LIU Zichen,WANG Yandi,ZHU Hong,XU Honghua,JI Ye,WEI Zhinong
摘要(Abstract):
随着配电网高级测量体系的发展,智能电表数据为配电网状态估计提供了丰富的用户信息。与此同时,配电网原有的通信系统难以适应日益增大的网络传输与实时存储的压力。针对海量智能电表数据给配电网带来的通信压力,引入闭环事件触发机制以减少不必要的量测传输,并在此基础上,将事件触发机制中对事件的定义从单一的负荷波动扩展到拓扑变化。同时,由于站内开关缺少遥信数据,无法直接获取其状态,利用触发的量测信息,通过GSE(广义状态估计)建立配电网拓扑-状态联合估计模型。最后,通过改进的IEEE 13三相不对称系统验证了所提算法在缓解通信压力的同时,能够得到与WLS(加权最小二乘)相近的状态估计结果,并能够辨识出开关错误信息。
With the development of advanced measurement infrastructure(AMI) in distribution networks, smart meter data provide abundant user-side information for state estimation. However, existing communication systems struggle to cope with the increasing network transmission and real-time storage demands. To address the communication pressure caused by massive smart meter data, this paper introduces a closed-loop event-triggered mechanism to reduce unnecessary measurement transmissions. Furthermore, the definition of“ events” is extended from load fluctuations to topology changes. Due to the lack of telemetry data for substation switching devices, their status information cannot be directly acquired. Triggered measurements are used to formulate a joint topology and state estimation model through generalized state estimation(GSE). Validation on a modified IEEE 13-node test system confirms that the method reduces communication load while achieving accuracy comparable to weighted least squares(WLS). It also identifies faulty switch status.
关键词(KeyWords):
配电网;联合状态估计;事件触发机制;广义状态估计
distribution network;joint state estimation;event-triggered mechanism;GSE
基金项目(Foundation): 国网江苏省电力有限公司科技项目(J2024080)
作者(Author):
程嘉诚,刘子琛,王琰迪,朱红,许洪华,纪业,卫志农
CHENG Jiacheng,LIU Zichen,WANG Yandi,ZHU Hong,XU Honghua,JI Ye,WEI Zhinong
DOI: 10.19585/j.zjdl.202509009
参考文献(References):
- [1]何英静,李帆,沈舒仪,等.新能源及分布式电源接入浙江配电网适应性研究[J].浙江电力,2018,37(1):32-36.HE Yingjing,LI Fan,SHEN Shuyi,et al.Adaptability research on integration of new energy and distributed generation into Zhejiang distribution networks[J].Zhejiang Electric Power,2018,37(1):32-36.
- [2]刘海鹏,杨晓静,陆涛,等.考虑分布式新能源的电网运行风险评估指标体系构建方法[J].浙江电力,2024,43(12):1-14.LIU Haipeng,YANG Xiaojing,LU Tao,et al.A method for constructing a risk assessment indicator system for grid operation considering distributed new energy sources[J].Zhejiang Electric Power,2024,43(12):1-14.
- [3]王星海,李鑫,王世坤,等.考虑分布式电源接入的配电网多目标优化重构方法研究[J].山东电力技术,2023,50(11):60-67.WANG Xinghai,LI Xin,WANG Shikun,et al.Research on multi-objective optimization and reconfiguration method of distribution network considering distributed generation access[J].Shandong Electric Power,2023,50(11):60-67.
- [4]罗文萱.基于胶囊神经网络的电力变压器故障诊断方法研究[J].高压电器,2024,60(5):92-98.LUO Wenxuan. Research on fault diagnosis method of power transformer based on capsule networks[J]. High Voltage Apparatus,2024,60(5):92-98.
- [5]李诗伟,骆晨,何叶,等.多源量测环境下计及时延融合的配电网区间状态估计[J].电力系统自动化,2024,48(12):120-129.LI Shiwei,LUO Chen,HE Ye,et al.Interval state estimation for distribution network considering time-delay fusion in multi-source measurement environment[J].Automation of Electric Power Systems,2024,48(12):120-129.
- [6]吴在军,徐东亮,徐俊俊,等.信息物理多重攻击下配电网状态估计关键技术评述[J].电力系统自动化,2024,48(6):127-138.WU Zaijun,XU Dongliang,XU Junjun,et al.Review on key technologies for distribution network state estimation under cyber-physical multiple attacks[J]. Automation of Electric Power Systems,2024,48(6):127-138.
- [7]龚泽威一,饶桐,王钢,等.基于改进粒子群优化XGBoost的变压器故障诊断方法[J].高压电器,2023,59(8):61-69.GONG Zeweiyi,RAO Tong,WANG Gang,et al.Fault diagnosis method of transformer based on improved particle swarm optimization XGBoost[J]. High Voltage Apparatus,2023,59(8):61-69.
- [8]于尔铿.电力系统状态估计[M].北京:水利电力出版社,1985.
- [9]林佳颖,栾文鹏,余贻鑫,等.AMI量测用于配电网在线状态估计的可信度建模及分析[J].电网技术,2018,42(4):1191-1200.LIN Jiaying,LUAN Wenpeng,YU Yixin,et al.Credibility modelling and analysis of AMI measurements for on-line distribution state estimation[J]. Power System Technology,2018,42(4):1191-1200.
- [10]童力,梁海维,邹旭东,等.基于数据驱动的配电网拓扑识别及线路阻抗估计[J].浙江电力,2022,41(1):10-18.TONG Li,LIANG Haiwei,ZOU Xudong,et al. Datedriven distribution network topology identification and line impedance estimation[J].Zhejiang Electric Power,2022,41(1):10-18.
- [11] LI L,YU D D,XIA Y Q,et al.Remote nonlinear state estimation with stochastic event-triggered sensor schedule[J]. IEEE Transactions on Cybernetics,2019,49(3):734-745.
- [12] YIN X Y,LIU J F.Event-triggered state estimation of linear systems using moving horizon estimation[J]. IEEE Transactions on Control Systems Technology,2021,29(2):901-909.
- [13] KOOSHKBAGHI M,MARQUEZ H J,XU W. Eventtriggered approach to dynamic state estimation of a synchronous machine using cubature Kalman filter[J].IEEE Transactions on Control Systems Technology,2020,28(5):2013-2020.
- [14]杨佩佩,汤文,韩自奋,等.新能源场站无功补偿装置投退对电网运行影响研究[J].电力电容器与无功补偿,2024,45(6):10-16.YANG Peipei,TANG Wen,HAN Zifen,et al.Study on influence of reactive power compensation device switching on power grid operation in new energy stations[J].Power Capacitor&Reactive Power Compensation,2024,45(6):10-16.
- [15] HUANG M Y,XU Q Y,WEI Z N.Event-triggered state estimation for distribution systems with SCADA and smart meter data[C]//2023 8th International Conference on Power and Renewable Energy(ICPRE). September22-25,2023,Shanghai,China:IEEE,2023:647-651.
- [16]白星振,郑鑫磊,葛磊蛟,等.基于事件触发机制的配电网自适应UKF动态状态估计[J].高电压技术,2021,47(7):2312-2321.BAI Xingzhen,ZHENG Xinlei,GE Leijiao,et al.Dynamic state estimation method with adaptive UKF for distribution network based on the event-triggered mechanism[J].High Voltage Engineering,2021,47(7):2312-2321.
- [17]陈尚,邵苠峰,李辉,等.低压配电网拓扑识别技术的真型试验研究[J].浙江电力,2022,41(12):30-35.CHEN Shang,SHAO Minfeng,LI Hui,et al.A true test research of topology identification technology for low voltage distribution networks[J]. Zhejiang Electric Power,2022,41(12):30-35.
- [18]刘超,杨扬,梁栋,等.基于AMI潮流匹配的中压配电网两阶段拓扑辨识[J].电力系统及其自动化学报,2020,32(3):123-128.LIU Chao,YANG Yang,LIANG Dong,et al.Two-stage topology identification of medium-voltage distribution network based on power flow matching of AMI measurements[J].Proceedings of the CSU-EPSA,2020,32(3):123-128.
- [19]龙寰,石子晴,赵景涛,等.基于多标签分类与卷积神经网络的配电网拓扑辨识[J].高电压技术,2024,50(10):4520-4529.LONG Huan,SHI Ziqing,ZHAO Jingtao,et al.Topology identification of distribution network based on multi-label classification and CNN[J]. High Voltage Engineering,2024,50(10):4520-4529.
- [20]孙伟,朱世睿,杨建平,等.基于图卷积网络的微电网拓扑辨识[J].电力系统自动化,2022,46(5):71-77.SUN Wei,ZHU Shirui,YANG Jianping,et al.Topology identification of microgrid based on graph convolutional network[J].Automation of Electric Power Systems,2022,46(5):71-77.
- [21]凌佳凯,章逸舟,胡金峰,等.基于CNN-LSTM-Attention的配电网拓扑实时辨识方法[J].浙江电力,2024,43(3):84-94.LING Jiakai,ZHANG Yizhou,HU Jinfeng,et al.A realtime topology identification method of distribution networks based on CNN-LSTM-Attention[J].Zhejiang Electric Power,2024,43(3):84-94.
- [22] FERNANDES T R,VENKATESH B,DE ALMEIDA M C. Distribution system topology identification via efficient MILP-based WLAV state estimation[J]. IEEE Transactions on Power Systems,2023,38(1):75-84.
- [23]马光,朱文,顾慧杰,等.基于加权最小绝对值状态估计的有源配电网拓扑辨识方法[J].中国电力,2024,57(1):167-174.MA Guang,ZHU Wen,GU Huijie,et al.Topology identification method for active distribution network based on weighted minimum absolute value state estimation[J].Electric Power,2024,57(1):167-174.
- [24]王献志,李铁成,郭少飞,等.基于μPMU电压相位数据的配电网拓扑辨识[J].电网与清洁能源,2022,38(6):54-63.WANG Xianzhi,LI Tiecheng,GUO Shaofei,et al.Identification of distribution network topology based onμPMU voltage phase data[J].Power System and Clean Energy,2022,38(6):54-63.
- [25]刘喆林,王成山,李鹏,等.多源量测数据融合的配电网状态估计及应用[J].中国电机工程学报,2021,41(8):2605-2615.LIU Zhelin,WANG Chengshan,LI Peng,et al.State estimation of distribution networks based on multi-source measurement data and its applications[J].Proceedings of the CSEE,2021,41(8):2605-2615.
- [26]王少芳,刘广一,黄仁乐,等.多采样周期混合量测环境下的主动配电网状态估计方法[J].电力系统自动化,2016,40(19):30-36.WANG Shaofang,LIU Guangyi,HUANG Renle,et al.State estimation method for active distribution networks under environment of hybrid measurements with multiple sampling periods[J]. Automation of Electric Power Systems,2016,40(19):30-36.
- [27]朱鹏程,柳劲松,范士雄,等.考虑混合量测的配电网二次约束二次估计方法[J].电网技术,2019,43(3):841-847.ZHU Pengcheng,LIU Jinsong,FAN Shixiong,et al. A quadratic constraint quadratic estimation method based on hybrid measurements for distribution networks[J].Power System Technology,2019,43(3):841-847.
- [28]黄蔓云,徐启颖,孙国强,等.事件触发机制下配电网三相动态状态估计[J].电力系统自动化,2024,48(13):100-108.HUANG Manyun,XU Qiying,SUN Guoqiang,et al.Three-phase dynamic state estimation for distribution network in event-triggered mechanism[J]. Automation of Electric Power Systems,2024,48(13):100-108.
- [29] CHENG C,BAI X Z.Robust forecasting-aided state estimation in power distribution systems with event-triggered transmission and reduced mixed measurements[J]. IEEE Transactions on Power Systems,2021,36(5):4343-4354.
- [30]陈芳,韩学山,康凯.一种识别闭合开关元件信息错误的状态估计方法[J].电力系统自动化,2011,35(1):50-54.CHEN Fang,HAN Xueshan,KANG Kai. State estimation algorithm with identification of closed breakers information[J].Automation of Electric Power Systems,2011,35(1):50-54.
- [31]王栋,梁正堂,李玉敦,等.基于广义状态估计的拓扑错误快速识别方法[J].山东电力技术,2023,50(2):26-32.WANG Dong,LIANG Zhengtang,LI Yudun,et al.Fast identification method of topology errors based on generalized state estimation[J].Shandong Electric Power,2023,50(2):26-32.
- [32]刘晟源,林振智,李金城,等.电力系统态势感知技术研究综述与展望[J].电力系统自动化,2020,44(3):229-239.LIU Shengyuan,LIN Zhenzhi,LI Jincheng,et al.Review and prospect of situation awareness technologies of power system[J].Automation of Electric Power Systems,2020,44(3):229-239.
- [33]刘权莹,李俊娥,倪明,等.电网信息物理系统态势感知:现状与研究构想[J].电力系统自动化,2019,43(19):9-21.LIU Quanying,LI June,NI Ming,et al.Situation awareness of grid cyber-physical system:current status and research ideas[J]. Automation of Electric Power Systems,2019,43(19):9-21.