基于数据挖掘的水电机组振动区精细划分方法Fine Division of Vibration Region of Hydroelectric Generating Set Based on Data Mining
张长伟,李德红,席慧,王卫玉,陈启卷
ZHANG Changwei,LI Dehong,XI Hui,WANG Weiyu,CHEN Qijuan
摘要(Abstract):
水电机组在长期运行过程中累积了海量的稳定性状态监测数据,但其价值尚未得到充分利用。针对水电机组状态监测数据挖掘及运行工况识别,设计并搭建了用于水电机组振动区精细划分的工况样本数据库,提出了基于数据挖掘的水电机组振动区划分方法,实现对机组已运行工况稳定性分析及健康工况识别,达成振动区精细划分。实际应用表明,基于数据挖掘的振动区划分结果比经典振动区划分更加精确,对机组安全稳定运行具有重要的指导意义。
During the long-term operation of hydropower units, massive monitoring data of stability state are accumulated, but value is yet to be exploited. Given value mining of condition monitoring data of hydropower units and the identification of operating conditions of hydropower units, an operating condition sample database for the fine division of vibration region of hydropower units is designed and established and a vibra-tion zone division method based on data mining is proposed to analyze the operating condition stability recog-nize the healthy operating condition, and thereby fine division of vibration zone is completed. The application of the method shows that the aforementioned method is superior to that based on data mining in precision,providing a significant reference to operation safety and stability of units.
关键词(KeyWords):
水电机组;振动区;数据库;数据挖掘
hydroelectric generating set;vibration zone;database;data mining
基金项目(Foundation): 国网浙江省电力有限公司科技项目(5211JS180013)
作者(Author):
张长伟,李德红,席慧,王卫玉,陈启卷
ZHANG Changwei,LI Dehong,XI Hui,WANG Weiyu,CHEN Qijuan
DOI: 10.19585/j.zjdl.202009015
参考文献(References):
- [1]陈国青.基于动态振动区条件下水电机组负荷分配策略研究[D].北京:华北电力大学,2017.
- [2]陈珊珊,杨耿杰.水电机组振动故障诊断方法综述[J].电气技术,2019,20(6):1-5.
- [3]李文武,孙刚,游文霞,等.水电站全厂振动区及最优动力特性曲线研究[J].水电能源科学,2016,34(11):148-151.
- [4]马云勇.水轮发电机组振动区特性分析[J].贵州电力技术,2013,16(10):61-63.
- [5]郭智俊,王卫玉.滩坑水电站1号机组振动区试验研究及分析[J].西北水电,2016(3):69-71.
- [6]钟堰辉.基于振动区域检测的小机组低水头运行稳定性分析[J].现代工业经济和信息化,2017,7(19):19-21.
- [7]吴祖平.龙滩水电站700 MW巨型水轮发电机组振动特性的研究[D].南宁:广西大学,2017.
- [8]乔亮亮,李晨坤,付亮,等.某250 MW水电机组振动区划分及AGC避振方法应用[J].水电能源科学,2018,36(9):152-154.
- [9]潘罗平.基于健康评估和劣化趋势预测的水电机组故障诊断系统研究[D].北京:中国水利水电科学研究院,2013.
- [10]娄强,王卫玉,陈启卷,等.基于在线监测数据的水轮机运行区精细划分[J].水力发电学报,2018,37(10):96-102.
- [11]严耀亮,孙伟.大数据时代基于所有工况的机组稳定性分析[J].水电厂自动化,2017,38(1):31-36.
- [12]齐民友.概率论与数理统计[M].北京:高等教育出版社,2004.
- [13]张飞,潘罗平,安学利.水轮发电机组稳定性参数统计特性与监测报警阈值研究[J].水力发电学报,2013,32(5):269-272.
- [14]吴勇灵,杨娜,潘晓慧,等.基于莱以特准则和数据融合的温湿度检测系统[J].科技通报,2017,33(3):96-99.
- [15]李登辉,李智.基于测量信息论的小样本粗大误差处理研究[J].机械工程与自化,2009(6):115-117.
- [16]王渝红,陈阳,曾琦,等.一种抑制超低频振荡的水电机组调速器参数协调优化方法研究[J].四川电力技术,2019(2):10-14.
- [17]韦建国,王建勇.基于Python的WEB数据挖掘应用[J].浙江水利水电学院学报,2019,31(4):79-82.
- [18]金巨波,葛雷,徐秀丽.计算机数据挖掘技术的开发及其应用[J].浙江水利水电学院学报,2019,31(6):68-72.