浙江电力

2023, v.42;No.331(11) 78-85

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

一种瓷支柱绝缘子红外图像目标检测算法
An infrared image target detection algorithm for porcelain post insulators

周阳洋,胡俊华,徐华,尹骏刚,李庆明,吴慧玲
ZHOU Yangyang,HU Junhua,XU Hua,YIN Jungang,LI Qingming,WU Huiling

摘要(Abstract):

利用红外热像法检测瓷支柱绝缘子是否存在异常发热,是变电站支柱绝缘子故障诊断的主要方法之一。结合计算机视觉技术提出了一种针对瓷支柱绝缘子红外图像的轻量级目标检测模型。首先,在深度可分离卷积中加入膨胀卷积核,有效增大输出单元的感受野,减少参数量。然后,使用得到的DMobilenet网络结构替换YOLOv7中的主干网络ELANCSP,并采用SJS(剪切、抖动、缩放)方法扩充样本数量,同时引入迁移学习、Mosaic数据增强、余弦退火等算法提高模型泛化能力。最后,将该模型与YOLOv4、YOLOv5、YOLOv7、G-Adaboost目标检测算法进行了性能对比。实验结果表明,该模型在保证准确率和速度的同时,具有更强的鲁棒性和泛化能力,且模型更轻量化。
Detecting abnormal heat in porcelain post insulators using infrared thermal imaging(ITI) stands as a principal approach for diagnosing fault in post insulators within substations. A lightweight target detection model for infrared images of porcelain post insulators is proposed based on computer vision. First, a dilated convolutional kernel is added to the depthwise separable convolution to effectively increase the receptive field of the output unit and reduce the number of parameters. Then, the obtained D-Mobilenet network structure is used to replace the backbone network ELANCSP in YOLOv7, and the SJS(shear, jitter, scale) method is used to expand the number of samples, and algorithms including transfer learning, Mosaic data augmentation, and cosine annealing are introduced to improve the model's generalization ability. Finally, the performance of the model is compared with YOLOv4, YOLOv5, YOLOv7, and the G-Adaboost target detection algorithm. Experimental findings demonstrate that this model boasts a superior combination of lightweight design, robustness, generalization capacity, accuracy, and speed.

关键词(KeyWords): 瓷支柱绝缘子;红外图像;目标检测;轻量化网络;YOLOv7
porcelain post insulator;infrared image;target detection;lightweight network;YOLOv7

Abstract:

Keywords:

基金项目(Foundation): 国网浙江省电力有限公司科技项目(B311MR220002)

作者(Author): 周阳洋,胡俊华,徐华,尹骏刚,李庆明,吴慧玲
ZHOU Yangyang,HU Junhua,XU Hua,YIN Jungang,LI Qingming,WU Huiling

DOI: 10.19585/j.zjdl.202311010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享