浙江电力

2025, v.44;No.345(01) 44-53

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于DQN-CE算法的电-热综合能源系统能量管理策略
An energy management strategy for integrated electricity-thermal energy systems using the DQN-CE algorithm

朱杰杰,皮志勇,陈代才,谭洪
ZHU Jiejie,PI Zhiyong,CHEN Daicai,TAN Hong

摘要(Abstract):

针对电-热综合能源系统中可再生能源输出的不确定性和间歇性问题,提出一种电-热综合能源系统能量管理的强化学习方法,以电-热综合能源系统运行成本最低为目标,实现综合能源系统的能量管理。首先,建立电-热综合能源系统能量管理模型;然后,将含可再生能源的电-热综合能源系统能量管理过程转化为马尔可夫决策过程,并采用融合NoisyNet(噪声网络)和自注意力机制的DQN-CE(深度Q网络-交叉熵)算法对智能体进行交互学习训练。最后,通过算例分析表明,所提方法训练的智能体能够实时响应可再生能源的不确定性,并能在线管理包含可再生能源在内的电-热综合能源系统的能量。
To address the uncertainty and intermittency of renewable energy output in integrated electricity-thermal energy systems, a reinforcement learning method for energy management is proposed, aiming to minimize the operating costs of the system. First, an energy management model for the integrated electricity-thermal energy system is established. Next, the energy management process of the system, which includes renewable energy, is transformed into a Markov decision process(MDP). The DQN-CE(Deep Q-Network with cross-entropy) algorithm, integrating NoisyNet and a self-attention mechanism, is then used to train the agent through interactive learning. Finally, case study analysis shows that the agent trained using the proposed method can respond in real time to the uncertainties of renewable energy and manage the energy of the integrated electricity-thermal energy system with renewable sources online.

关键词(KeyWords): 噪声网络;深度Q网络;自注意力机制;交叉熵损失函数
NoisyNet;Deep Q-network;self-attention mechanism;cross-entropy loss function

Abstract:

Keywords:

基金项目(Foundation): 湖北省自然科学基金创新发展联合基金项目(2024AFD350)

作者(Author): 朱杰杰,皮志勇,陈代才,谭洪
ZHU Jiejie,PI Zhiyong,CHEN Daicai,TAN Hong

DOI: 10.19585/j.zjdl.202501005

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享