油浸式变压器内部温度的热-流场耦合仿真与特性分析Thermal-fluid field coupling simulation and characteristic analysis on internal temperature of oil-immersed transformers
邵先军,高一冉,金凌峰,詹江杨,郑一鸣,李元
SHAO Xianjun,GAO Yiran,JIN Lingfeng,ZHAN Jiangyang,ZHENG Yiming,LI Yuan
摘要(Abstract):
绕组热点温升是评估油浸式变压器运行状态及剩余寿命的关键指标。以110 kV油浸自冷式变压器为研究对象,搭建包含散热器等效几何结构的二维闭环全尺寸热-流场仿真模型,模型预测温度与温升试验结果误差小于5℃,准确性较高。仿真结果显示绕组水平油道内存在油流静止段,为改善此区域的油流循环,分析了水平油道宽度和挡油板数量对油流速和绕组温升的影响规律。研究结果表明:加宽水平油道可降低绕组平均温度和热点温度;安装挡油板可显著提升水平油道油流速,降低绕组平均温升;所设置条件下,安装5个挡油板为综合散热性能最优方案。
The temperature rise at winding hotspots is a critical metric for assessing the operational condition and remaining lifespan of oil-immersed transformers. In the context of a 110 kV oil-immersed self-cooling transformer, a comprehensive two-dimensional closed-loop full-scale thermal-fluid simulation model incorporating the equivalent geometric structures of radiators is constructed. The model predicts temperatures with an error of less than 5 ℃ when compared to temperature rise test results, demonstrating a high level of accuracy. Simulation results bring to light the presence of an oil stagnant zone within the horizontal oil duct of the windings. To optimize oil circulation in this area, the impact of horizontal oil duct width and the number of baffle plates on oil flow rate and winding temperature rise is analyzed. The study findings suggest that widening the horizontal oil duct reduces both the average winding temperature and hotspot temperature. Additionally, the installation of baffle plates significantly improves oil flow rate in the horizontal oil duct, consequently reducing the average winding temperature rise. Under the specified conditions, the installation of five baffle plates emerges as the optimal solution for achieving comprehensive heat dissipation performance.
关键词(KeyWords):
油浸式变压器;热点温度;热-流场耦合;温升试验;结构优化
oil-immersed transformer;hotspot temperature;thermal-fluid field coupling;temperature rise test;structural optimization
基金项目(Foundation): 国家自然科学基金项目(52107165)
作者(Author):
邵先军,高一冉,金凌峰,詹江杨,郑一鸣,李元
SHAO Xianjun,GAO Yiran,JIN Lingfeng,ZHAN Jiangyang,ZHENG Yiming,LI Yuan
DOI: 10.19585/j.zjdl.202312005
参考文献(References):
- [1]张琛,熊庆,汲胜昌,等.基于压电材料的变压器振动能量收集装置研究[J].电力工程技术,2021,40(6):173-178.ZHANG Chen,XIONG Qing,JI Shengchang,et al.Vibration energy harvesting device for transformer based on piezoelectric material[J]. Electric Power Engineering Technology,2021,40(6):173-178.
- [2] ZHANG X,DAGHRAH M,WANG Z D,et al.Flow and temperature distributions in a disc type winding-Part II:natural cooling modes[J].Applied Thermal Engineering,2020,165:114616.
- [3]丁玉琴,张乔根,高萌,等.油浸式配电变压器分布式热路模型[J].高电压技术,2019,45(3):968-974.DING Yuqin,ZHANG Qiaogen,GAO Meng,et al. Distributed thermal circuit model of oil-immersed distribution transformers[J].High Voltage Engineering,2019,45(3):968-974.
- [4]国家质量监督检验检疫总局,中国国家标准化管理委员会.电力变压器7部分:油浸式电力变压器负载导则:GB/T 1094.7—2008[S].北京:中国标准出版社,2009.
- [5]张军,陈霄,张旺,等.基于GP-NLSM的变压器绕组热点温度建模[J].电力工程技术,2022,41(5):165-171.ZHANG Jun,CHEN Xiao,ZHANG Wang,et al.Hot spot temperature prediction model of transformer based on GPNLMS[J].Electric Power Engineering Technology,2022,41(5):165-171.
- [6]周利军,王健,王路伽,等.强油导向结构变压器绕组区域温度建模及热点定位[J].高电压技术,2020,46(11):3896-3904.ZHOU Lijun,WANG Jian,WANG Lujia,et al. Thermal modeling and hot spot locating for transformer winding in oil forced and directed cooling mode[J].High Voltage Engineering,2020,46(11):3896-3904.
- [7]刘亚东,陈思,丛子涵,等.电力装备行业数字孪生关键技术与应用展望[J].高电压技术,2021,47(5):1539-1554.LIU Yadong,CHEN Si,CONG Zihan,et al.Key technology and application prospect of digital twin in power equipment industry[J].High Voltage Engineering,2021,47(5):1539-1554.
- [8]苏小平,陈伟根,胡启元,等.基于解析-数值技术的变压器绕组温度分布计算[J].高电压技术,2014,40(10):3164-3170.SU Xiaoping,CHEN Weigen,HU Qiyuan,et al.Calculation for transformer winding temperature distribution by numerical analytical technology[J]. High Voltage Engineering,2014,40(10):3164-3170.
- [9]廖才波,阮江军,陆云才,等.油浸式立体卷铁心变压器温度场仿真分析[J].变压器,2016,53(11):41-44.LIAO Caibo,RUAN Jiangjun,LU Yuncai,et al.Temperature field simulation and analysis of oil-immersed transformer with 3D wound core[J]. Transformer,2016,53(11):41-44.
- [10] PARAMANE S B,VAN DER VEKEN W,SHARMA A,et al.Effects of oil leakage on thermal hydraulic characteristics and performance of a disc-type transformer winding[J].Applied Thermal Engineering,2016,98:1130-1139.
- [11]王永强,马伦,律方成,等.基于有限差分和有限体积法相结合的油浸式变压器三维温度场计算[J].高电压技术,2014,40(10):3179-3185.WANG Yongqiang,MA Lun,LüFangcheng,et al.Calculation of 3D temperature field of oil immersed transformer by the combination of the finite element and finite volume method[J]. High Voltage Engineering,2014,40(10):3179-3185.
- [12]谢裕清,李琳,宋雅吾,等.油浸式电力变压器绕组温升的多物理场耦合计算方法[J].中国电机工程学报,2016,36(21):5957-5965.XIE Yuqing,LI Lin,SONG Yawu,et al. Multi-physical field coupled method for temperature rise of winding in oilimmersed power transformer[J]. Proceedings of the CSEE,2016,36(21):5957-5965.
- [13]刘刚,靳艳娇,马永强,等.基于混合法的油浸式变压器二维瞬态温度场仿真[J].高压电器,2019,55(4):82-89.LIU Gang,JIN Yanjiao,MA Yongqiang,et al.2-D transient temperature field simulation of oil-immersed transformer based on hybrid method[J].High Voltage Apparatus,2019,55(4):82-89.
- [14]廖才波,阮江军,刘超,等.油浸式变压器三维电磁-流体-温度场耦合分析方法[J].电力自动化设备,2015,35(9):150-155.LIAO Caibo,RUAN Jiangjun,LIU Chao,et al.Comprehensive analysis of 3-D electromagnetic-fluid-thermal fields of oil-immersed transformer[J].Electric Power Automation Equipment,2015,35(9):150-155.
- [15]段辞涵,阮江军,邓永清,等.变压器温度场计算边界辐射-对流复合换热等效方法研究[J].电机与控制学报,2020,24(10):120-129.DUAN Cihan,RUAN Jiangjun,DENG Yongqing,et al.Study on equivalent method of boundary radiationconvection heat transfer for transformer temperature field calculation[J]. Electric Machines and Control,2020,24(10):120-129.
- [16] GARELLI L,RíOS RODRIGUEZ G A,KUBICZEK K,et al. Thermo-magnetic-fluid dynamics analysis of an ONAN distribution transformer cooled with mineral oil and biodegradable esters[J]. Thermal Science and Engineering Progress,2021,23:100861.
- [17]廖才波,阮江军,逯怀东,等.油浸式变压器二维电磁-流体-温度场耦合分析方法研究[J].科学技术与工程,2014,14(36):67-71.LIAO Caibo,RUAN Jiangjun,LU Huaidong,et al. 2-D coupled electromagnetic-fluid-thermal analysis of oilimmersed transformer[J]. Science Technology and Engineering,2014,14(36):67-71.
- [18] SANTISTEBAN A,DELGADO F,ORTIZ A,et al.Numerical analysis of the hot-spot temperature of a power transformer with alternative dielectric liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):3226-3235.
- [19]刘慧娟,杜晋文,张振洋,等.油浸式变压器饼式绕组电磁-温度-流体场双向耦合数值建模与分析[J].北京交通大学学报,2020,44(4):141-149.LIU Huijuan,DU Jinwen,ZHANG Zhenyang,et al.Numerical modeling and analysis of electromagnetictemperature-fluid field two-way coupling in disc-type winding of oil-immersed transformer[J].Journal of Beijing Jiaotong University,2020,44(4):141-149.
- [20] TORRIANO F,PICHER P,CHAABAN M. Numerical investigation of 3D flow and thermal effects in a disc-type transformer winding[J]. Applied Thermal Engineering,2012,40:121-131.
- [21]邓永清,阮江军,龚宇佳,等.基于参数热等效的10 kV变压器温度流体场三维仿真计算[J].电力自动化设备,2021,41(4):212-218.DENG Yongqing,RUAN Jiangjun,GONG Yujia,et al.Three dimensional thermal fluid field simulation of 10 kV transformer based on parameter thermal equivalence[J].Electric Power Automation Equipment,2021,41(4):212-218.
- [22]晋涛,胡帆,梁基重,等.油浸式变压器热点温升计算中绕组结构简化的误差分析[J].高压电器,2021,57(11):156-163.JIN Tao,HU Fan,LIANG Jichong,et al.Error analysis of winding structure simplification in hot spot temperature rise calculation of oil immersed transformer[J].High Voltage Apparatus,2021,57(11):156-163.
- [23] ZHANG J,LI X. Oil cooling for disk-type transformer windings—part II:parametric studies of design parameters[J].IEEE Transactions on Power Delivery,2006,21(3):1326-1332.
- [24]唐宇.大型电力变压器附加损耗与温度场分析[D].哈尔滨:哈尔滨理工大学,2017.TANG Yu.Analysis of additional loss and thermal field of power transformer[D].Harbin:Harbin University of Science and Technology,2017.
- [25]徐天光,王永庆,朱超,等.变压器用片式散热器散热性能数值模拟及试验研究[J].电力工程技术,2020,39(5):178-184.XU Tianguang,WANG Yongqing,ZHU Chao,et al.Numerical simulation and experimental study on heat transfer performance of panel-type radiators for transformers[J].Electric Power Engineering Technology,2020,39(5):178-184.
- [26]朱险峰,刘子伟,李盛飞.基于流体-温度场耦合的油浸式变压器温升特性仿真分析[J].电工技术,2022(15):46-50.ZHU Xianfeng,LIU Ziwei,LI Shengfei.Simulation analysis of temperature rise characteristics of oil-immersed transformer based on fluid-temperature field coupling[J].Electric Engineering,2022(15):46-50.
- [27] YATSEVSKY V A.Hydrodynamics and heat transfer in cooling channels of oil-filled power transformers with multicoil windings[J].Applied Thermal Engineering,2014,63(1):347-353.
- [28] YANG F,WU T,JIANG H,et al. A new method for transformer hot-spot temperature prediction based on dynamic mode decomposition[J]. Case Studies in Thermal Engineering,2022,37:102268.
- [29]国家质量监督检验检疫总局,中国国家标准化管理委员会.电力变压器第2部分:液浸式变压器的温升:GB/T1094.2—2013[S].北京:中国标准出版社,2014.
- 油浸式变压器
- 热点温度
- 热-流场耦合
- 温升试验
- 结构优化
oil-immersed transformer - hotspot temperature
- thermal-fluid field coupling
- temperature rise test
- structural optimization