考虑风光荷联合场景的配电网动态重构策略Dynamic reconfiguration of distribution networks considering wind-PV-load scenarios
刘蓉晖,陈耿,孙改平,林顺富,王旭
LIU Ronghui,CHEN Geng,SUN Gaiping,LIN Shunfu,WANG Xu
摘要(Abstract):
随着高比例可再生能源的接入,配电网电压越限、网络损耗增大和风光消纳等问题日益突出。为此,提出一种考虑风光荷联合场景的配电网动态重构方法。首先,针对风光出力和负荷需求的时序特征,提出一种信息最大化GAN(生成对抗网络)方法,用于获得源荷联合场景。接着,构建考虑网络损耗、节点电压偏差、弃风弃光成本的配电网多目标动态重构模型。然后,为提高模型求解效率,采用Fisher时段划分方法确定最佳重构时段范围,并通过NSGA-Ⅱ(二代非支配排序遗传算法)和模糊综合评价方法得到最优重构策略。最后,通过改进的IEEE 33节点配电系统进行仿真分析,验证了所提方法的有效性。
The increasing integration of high-penetration renewable energy has led to prominent challenges in distribution networks, including voltage violations, increased network losses, and wind and photovoltaic(PV) power accommodation. To address these issues, this paper proposes a dynamic reconfiguration method for distribution networks that accounts for wind-PV-load scenarios. First, based on the temporal characteristics of wind/PV outputs and load demand, an information-maximizing generative adversarial network(InfoMax-GAN) is introduced to generate source-load scenarios. Subsequently, a multi-objective dynamic reconfiguration model is formulated, incorporating network losses, node voltage deviations, and wind/PV curtailment costs. To enhance computational efficiency, Fisher optimal partition is employed to determine optimal reconfiguration intervals. The non-dominated sorting genetic algorithm II(NSGA-II) and fuzzy comprehensive evaluation method are utilized to derive the optimal reconfiguration strategy. Finally, simulation analysis of a modified IEEE 33-bus distribution system demonstrates the effectiveness of the proposed method.
关键词(KeyWords):
可再生能源;场景生成;生成对抗网络;配电网重构;多目标优化
renewable energy;scenario generation;GAN;distribution network reconfiguration;multi-objective optimization
基金项目(Foundation): 国家自然科学基金(51977127);国家自然科学基金(52277110)
作者(Author):
刘蓉晖,陈耿,孙改平,林顺富,王旭
LIU Ronghui,CHEN Geng,SUN Gaiping,LIN Shunfu,WANG Xu
DOI: 10.19585/j.zjdl.202507010
参考文献(References):
- [1]程杉,傅桐,李沣洋,等.含高渗透可再生能源的配电网灵活性供需协同规划[J].电力系统保护与控制,2023,51(22):1-12.CHENG Shan,FU Tong,LI Fengyang,et al.Flexible supply demand collaborative planning for distribution networks with high penetration of renewable energy[J].Power System Protection and Control,2023,51(22):1-12.
- [2]孙欣,严佳嘉,谢敬东,等.“碳中和”目标下电气互联系统有功-无功协同优化模型[J].上海交通大学学报,2021,55(12):1554-1566.SUN Xin,YAN Jiajia,XIE Jingdong,et al. Coordinated optimization model of active power and reactive power in power and gas systems with the objective of carbon neutrality[J].Journal of Shanghai Jiao Tong University,2021,55(12):1554-1566.
- [3]杨博,王俊婷,俞磊,等.基于孔雀优化算法的配电网储能系统双层多目标优化配置[J].上海交通大学学报,2022,56(10):1294-1307.YANG Bo,WANG Junting,YU Lei,et al.Peafowl optimization algorithm based bi-level multi-objective optimal allocation of energy storage systems in distribution network[J].Journal of Shanghai Jiao Tong University,2022,56(10):1294-1307.
- [4]章博,刘晟源,林振智,等.高比例新能源下考虑需求侧响应和智能软开关的配电网重构[J].电力系统自动化,2021,45(8):86-94.ZHANG Bo,LIU Shengyuan,LIN Zhenzhi,et al.Distribution network reconfiguration with high penetration of renewable energy considering demand response and soft open point[J]. Automation of Electric Power Systems,2021,45(8):86-94.
- [5]王育飞,郑云平,薛花,等.基于增强烟花算法的移动式储能削峰填谷优化调度[J].电力系统自动化,2021,45(5):48-56.WANG Yufei,ZHENG Yunping,XUE Hua,et al.Optimal dispatch of mobile energy storage for peak load shifting based on enhanced firework algorithm[J].Automation of Electric Power Systems,2021,45(5):48-56.
- [6]向小蓉,刘涤尘,向农,等.基于并行禁忌搜索算法的配电网重构[J].电网技术,2012,36(8):100-105.XIANG Xiaorong,LIU Dichen,XIANG Nong,et al.Distribution network reconfiguration based on parallel tabu search algorithm[J].Power System Technology,2012,36(8):100-105.
- [7]廖峰,陈锦荣,区伟潮,等.基于改进社会蜘蛛算法的有源配电网重构[J].电力系统及其自动化学报,2023,35(10):125-133.LIAO Feng,CHEN Jinrong,OU Weichao,et al. Active distribution network reconfiguration based on improved social spider algorithm[J].Proceedings of the CSU-EPSA,2023,35(10):125-133.
- [8]易海川,张彼德,王海颖,等.提高DG接纳能力的配电网动态重构方法[J].电网技术,2016,40(5):1431-1436.YI Haichuan,ZHANG Bide,WANG Haiying,et al.Distribution network dynamic reconfiguration method for improving distribution network’s ability of accepting DG[J].Power System Technology,2016,40(5):1431-1436.
- [9]杨胡萍,李晓馨,曹正东,等.考虑风光的两阶段配电网动态重构方法[J].电力系统保护与控制,2023,51(21):12-21.YANG Huping,LI Xiaoxin,CAO Zhengdong,et al. A two-stage dynamic reconfiguration method for distribution networks considering wind and solar power[J].Power System Protection and Control,2023,51(21):12-21.
- [10]田书欣,刘浪,魏书荣,等.基于改进灰狼优化算法的配电网动态重构[J].电力系统保护与控制,2021,49(16):1-11.TIAN Shuxin,LIU Lang,WEI Shurong,et al. Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm[J]. Power System Protection and Control,2021,49(16):1-11.
- [11]黄鸣宇,张庆平,张沈习,等.高比例清洁能源接入下计及需求响应的配电网重构[J].电力系统保护与控制,2022,50(1):116-123.HUANG Mingyu,ZHANG Qingping,ZHANG Shenxi,et al. Distribution network reconfiguration considering demand-side response with high penetration of clean energy[J].Power System Protection and Control,2022,50(1):116-123.
- [12]赵静翔,牛焕娜,王钰竹.基于信息熵时段划分的主动配电网动态重构[J].电网技术,2017,41(2):402-408.ZHAO Jingxiang,NIU Huanna,WANG Yuzhu.Dynamic reconfiguration of active distribution network based on information entropy of time intervals[J]. Power System Technology,2017,41(2):402-408.
- [13]李晏君,何雨微,盛方,等.兼顾风-光-荷不确定性与相关性的配电网多目标重构方法[J].浙江电力,2024,43(8):20-27.LI Yanjun,HE Yuwei,SHENG Fang,et al. A multiobjective reconfiguration method for distribution networks considering the wind-photovoltaic-load uncertainty and correlation[J].Zhejiang Electric Power,2024,43(8):20-27.
- [14]宋倩芸.计及多种分布式能源运行的配电网双层优化规划方法[J].电力系统保护与控制,2020,48(11):53-61.SONG Qianyun.A bi-level optimization planning method for a distribution network considering different types of distributed generation[J].Power System Protection and Control,2020,48(11):53-61.
- [15]BAPTISTA J E R,RODRIGUES A B,DA GUIA DA SILVA M.Probabilistic analysis of PV generation impacts on voltage sags in LV distribution networks considering failure rates dependent on feeder loading[J].IEEE Transactions on Sustainable Energy,2019,10(3):1342-1350.
- [16]WANG Q,ZHANG X G,XU D G.Source-load scenario generation based on weakly supervised adversarial learning and its data-driven application in energy storage capacity sizing[J].IEEE Transactions on Sustainable Energy,2023,14(4):1918-1932.
- [17]董骁翀,孙英云,蒲天骄.基于条件生成对抗网络的可再生能源日前场景生成方法[J].中国电机工程学报,2020,40(17):5527-5536.DONG Xiaochong,SUN Yingyun,PU Tianjiao. Dayahead scenario generation of renewable energy based on conditional GAN[J].Proceedings of the CSEE,2020,40(17):5527-5536.
- [18]李辉,任洲洋,胡博,等.基于时序生成对抗网络的月度风光发电功率场景分析方法[J].中国电机工程学报,2022,42(2):537-548.LI Hui,REN Zhouyang,HU Bo,et al.A sequential generative adversarial network based monthly scenario analysis method for wind and photovoltaic power[J].Proceedings of the CSEE,2022,42(2):537-548.
- [19]陈凡,陈刘明,王曼,等.基于改进信息最大化生成对抗网络的风光出力场景可控生成方法[J].电网技术,2024,48(4):1477-1490.CHEN Fan,CHEN Liuming,WANG Man,et al.Controllable scenario generation method for wind power and photovoltaic output based on improved InfoGAN[J]. Power System Technology,2024,48(4):1477-1490.
- [20]王守相,陈海文,李小平,等.风电和光伏随机场景生成的条件变分自动编码器方法[J].电网技术,2018,42(6):1860-1869.WANG Shouxiang,CHEN Haiwen,LI Xiaoping,et al.Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J].Power System Technology,2018,42(6):1860-1869.
- [21]MENG X L,ZHANG L M,CONG P W,et al.Dynamic reconfiguration of distribution network considering scheduling of DG active power outputs[C]//2014 International Conference on Power System Technology.October 20-22,2014. Chengdu. IEEE,2014:1433-1439.
- 可再生能源
- 场景生成
- 生成对抗网络
- 配电网重构
- 多目标优化
renewable energy - scenario generation
- GAN
- distribution network reconfiguration
- multi-objective optimization