浙江电力

2025, v.44;No.351(07) 93-101

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑风光荷联合场景的配电网动态重构策略
Dynamic reconfiguration of distribution networks considering wind-PV-load scenarios

刘蓉晖,陈耿,孙改平,林顺富,王旭
LIU Ronghui,CHEN Geng,SUN Gaiping,LIN Shunfu,WANG Xu

摘要(Abstract):

随着高比例可再生能源的接入,配电网电压越限、网络损耗增大和风光消纳等问题日益突出。为此,提出一种考虑风光荷联合场景的配电网动态重构方法。首先,针对风光出力和负荷需求的时序特征,提出一种信息最大化GAN(生成对抗网络)方法,用于获得源荷联合场景。接着,构建考虑网络损耗、节点电压偏差、弃风弃光成本的配电网多目标动态重构模型。然后,为提高模型求解效率,采用Fisher时段划分方法确定最佳重构时段范围,并通过NSGA-Ⅱ(二代非支配排序遗传算法)和模糊综合评价方法得到最优重构策略。最后,通过改进的IEEE 33节点配电系统进行仿真分析,验证了所提方法的有效性。
The increasing integration of high-penetration renewable energy has led to prominent challenges in distribution networks, including voltage violations, increased network losses, and wind and photovoltaic(PV) power accommodation. To address these issues, this paper proposes a dynamic reconfiguration method for distribution networks that accounts for wind-PV-load scenarios. First, based on the temporal characteristics of wind/PV outputs and load demand, an information-maximizing generative adversarial network(InfoMax-GAN) is introduced to generate source-load scenarios. Subsequently, a multi-objective dynamic reconfiguration model is formulated, incorporating network losses, node voltage deviations, and wind/PV curtailment costs. To enhance computational efficiency, Fisher optimal partition is employed to determine optimal reconfiguration intervals. The non-dominated sorting genetic algorithm II(NSGA-II) and fuzzy comprehensive evaluation method are utilized to derive the optimal reconfiguration strategy. Finally, simulation analysis of a modified IEEE 33-bus distribution system demonstrates the effectiveness of the proposed method.

关键词(KeyWords): 可再生能源;场景生成;生成对抗网络;配电网重构;多目标优化
renewable energy;scenario generation;GAN;distribution network reconfiguration;multi-objective optimization

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(51977127);国家自然科学基金(52277110)

作者(Author): 刘蓉晖,陈耿,孙改平,林顺富,王旭
LIU Ronghui,CHEN Geng,SUN Gaiping,LIN Shunfu,WANG Xu

DOI: 10.19585/j.zjdl.202507010

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享